Home
Class 12
MATHS
inte^(xloga).e^(x)dx is equal to...

`inte^(xloga).e^(x)dx` is equal to

A

`(ae)^(x)`

B

`((ae)^(x))/(log(ae))`

C

`(e^(x))/(1+loga)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{x \log a} \cdot e^x \, dx \), we can follow these steps: ### Step 1: Combine the Exponents We start with the integral: \[ \int e^{x \log a} \cdot e^x \, dx \] Using the property of exponents, we can combine the terms: \[ e^{x \log a} \cdot e^x = e^{x \log a + x} = e^{x (\log a + 1)} \] Thus, the integral can be rewritten as: \[ \int e^{x (\log a + 1)} \, dx \] ### Step 2: Use the Integration Formula We know that the integral of \( e^{kx} \) is given by: \[ \int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \] In our case, \( k = \log a + 1 \). Therefore, we can apply this formula: \[ \int e^{x (\log a + 1)} \, dx = \frac{1}{\log a + 1} e^{x (\log a + 1)} + C \] ### Step 3: Substitute Back Now, we can substitute back to express the result in terms of \( a \): \[ = \frac{1}{\log a + 1} e^{x (\log a + 1)} + C \] This can be simplified to: \[ = \frac{e^{x} \cdot e^{x \log a}}{\log a + 1} + C \] Since \( e^{x \log a} = a^x \), we can rewrite it as: \[ = \frac{a^x e^x}{\log a + 1} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int e^{x \log a} \cdot e^x \, dx = \frac{a^x e^x}{\log a + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

The value of int(x-1)e^(-x) dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

inte^(xlna)*e^x dx

int cos (log_e x)dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to