Home
Class 12
MATHS
If intg(x)dx=g(x), then evaluate intg(x)...

If `intg(x)dx=g(x)`, then evaluate `intg(x){f(x)+f^(prime)(x)}dx`

A

`g(x)f(x)-g(x)f'(x)+C`

B

`g(x)f'(x)+C`

C

`g(x)f(x)+C`

D

`g(x)f^(2)(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

If intg(x)dx=g(x) , then the value of the integral intf(x)g(x){f(x)+2f'(x)}dx is

Evaluate: int[f(x)g''(x)-f''(x)g(x)]dx

int[f(a x+b)]^nf^(prime)(a x+b)dx

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

Write a value of inte^(a x)\ {a\ f\ (x)+f^(prime)(x)}\ dx

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Solve x dy=(y+x(f(y/x))/(f^(prime)(y/x)))dx