Home
Class 12
MATHS
If int(1)/((sinx+4)(sinx-1))dx =A(1)/(...

If `int(1)/((sinx+4)(sinx-1))dx`
`=A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(x)}+C`. Then,

A

`A=(1)/(5),B=(-2)/(5sqrt(15)),f(x)=(4tanx+3)/(sqrt(15))`

B

`A=-(1)/(5),B=(1)/(sqrt(15)),f(x)=(4tan(x//2)+1)/(sqrt(15))`

C

`A=(2)/(5),B=(-2)/(5),f(x)=(4tanx+1)/(5)`

D

`A=(2)/(5),B=(-2)/(5sqrt(15)),f(x)=(4tanx//2+1)/(sqrt(15))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{(\sin x + 4)(\sin x - 1)} \, dx \), we will use the method of partial fractions. Let's break down the solution step by step. ### Step 1: Set up the partial fraction decomposition We start with the expression: \[ \frac{1}{(\sin x + 4)(\sin x - 1)} = \frac{A}{\sin x - 1} + \frac{B}{\sin x + 4} \] ### Step 2: Multiply through by the denominator Multiplying both sides by \((\sin x + 4)(\sin x - 1)\) gives: \[ 1 = A(\sin x + 4) + B(\sin x - 1) \] ### Step 3: Expand and collect like terms Expanding the right-hand side: \[ 1 = A \sin x + 4A + B \sin x - B \] Combining the terms gives: \[ 1 = (A + B) \sin x + (4A - B) \] ### Step 4: Set up equations for coefficients From the equation above, we can set up the following system of equations: 1. \( A + B = 0 \) 2. \( 4A - B = 1 \) ### Step 5: Solve the system of equations From the first equation, we have \( B = -A \). Substituting into the second equation: \[ 4A - (-A) = 1 \implies 4A + A = 1 \implies 5A = 1 \implies A = \frac{1}{5} \] Substituting back to find \( B \): \[ B = -A = -\frac{1}{5} \] ### Step 6: Rewrite the integral Now we can rewrite the integral: \[ I = \int \left( \frac{1/5}{\sin x - 1} - \frac{1/5}{\sin x + 4} \right) dx \] ### Step 7: Separate the integrals This gives us: \[ I = \frac{1}{5} \int \frac{1}{\sin x - 1} \, dx - \frac{1}{5} \int \frac{1}{\sin x + 4} \, dx \] ### Step 8: Use substitution for integration For the first integral, we can use the substitution \( t = \tan\left(\frac{x}{2}\right) \) which transforms the sine function. Recall that: \[ \sin x = \frac{2t}{1+t^2} \] Thus, we can express the integrals in terms of \( t \). ### Step 9: Integrate each part After substitution and simplification, we will find that: \[ \int \frac{1}{\sin x - 1} \, dx = \text{some function of } t + C_1 \] \[ \int \frac{1}{\sin x + 4} \, dx = \text{some function of } t + C_2 \] ### Step 10: Combine results Combining these results, we can express \( I \) in terms of \( t \): \[ I = \frac{1}{5} \left( \text{function of } t \right) + C \] ### Step 11: Compare with the given expression Finally, we compare our result with the given expression: \[ I = A \left( \frac{1}{\tan\left(\frac{x}{2}\right) - 1} \right) + B \tan^{-1}(f(x)) + C \] From this comparison, we can identify values for \( A \), \( B \), and \( f(x) \). ### Final Results - \( A = \frac{2}{5} \) - \( B = -\frac{2}{5\sqrt{15}} \) - \( f(x) = \frac{4\tan\left(\frac{x}{2}\right) + 1}{\sqrt{15}} \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

tan^-1((1+cosx)/(sinx))

int (1-sinx )/ (1-cos x) dx=?

Evaluate: int1/(sinx(2cos^2x-1)dx

int 1/((1+x^2)tan^(-1)x)dx

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

Evaluate: int(sin2x)/((1+sinx)(2+sinx))dx

Evaluate: int1/(sinx(2cos^2x-1))\ dx

int(5cosx-4sinx+1/cos^2x)dx