Home
Class 12
MATHS
intcos^(3)xe^(log(sinx))dx is equal to...

`intcos^(3)xe^(log(sinx))dx` is equal to

A

`-(sin^(4)x)/(4)+C`

B

`-(cos^(4)x)/(4)+C`

C

`(e^(sinx))/(4)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3 x \, e^{\log(\sin x)} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We start by simplifying the expression \( e^{\log(\sin x)} \). According to the properties of logarithms and exponents, we have: \[ e^{\log(\sin x)} = \sin x \] Thus, the integral becomes: \[ \int \cos^3 x \, \sin x \, dx \] ### Step 2: Use Substitution Next, we will use substitution to simplify the integral further. Let: \[ t = \cos x \] Then, the derivative of \( t \) with respect to \( x \) is: \[ dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] Now, we can rewrite the integral in terms of \( t \): \[ \int \cos^3 x \, \sin x \, dx = \int t^3 (-dt) = -\int t^3 \, dt \] ### Step 3: Integrate Now we can integrate \( -\int t^3 \, dt \): \[ -\int t^3 \, dt = -\left( \frac{t^{4}}{4} \right) + C = -\frac{t^4}{4} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = \cos x \): \[ -\frac{t^4}{4} + C = -\frac{\cos^4 x}{4} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \cos^3 x \, e^{\log(\sin x)} \, dx = -\frac{\cos^4 x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

cos^(3) x e^(log sinx)

The value of int(x e^ln(sinx)-cosx)dx is equal to

The value of : int"cos"^(2) xe^("log""sin"x)dx is :

Evaluate: intcos^3xe^(logsinx)dx

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

int(cotx)/(log(sinx)dx

intcos^5x dx

intcos^(2) x dx

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal(A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

int(dx)/(cosx+sinx) is equal to