Home
Class 12
MATHS
int(sqrt(tanx))/(sinxcosx)dx is equal to...

`int(sqrt(tanx))/(sinxcosx)dx` is equal to.

A

`2sqrt(tanx)+C`

B

`2sqrt(cotx)+C`

C

`(sqrt(tanx))/(2)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \] We know that \( \tan x = \frac{\sin x}{\cos x} \), so we can rewrite \( \sqrt{\tan x} \) as \( \sqrt{\frac{\sin x}{\cos x}} \). Thus, we have: \[ I = \int \frac{\sqrt{\frac{\sin x}{\cos x}}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\sin x}}{\sin x \cos x \sqrt{\cos x}} \, dx \] ### Step 2: Simplify the Expression Now, we can simplify the expression: \[ I = \int \frac{\sqrt{\sin x}}{\sin x \cos x \sqrt{\cos x}} \, dx = \int \frac{1}{\sqrt{\sin x} \cos x} \, dx \] ### Step 3: Multiply and Divide by \(\cos x\) To facilitate integration, we multiply and divide by \(\cos x\): \[ I = \int \frac{\sqrt{\tan x}}{\sin x \cos x} \cdot \frac{\cos x}{\cos x} \, dx = \int \frac{\sqrt{\tan x} \cdot \cos x}{\sin x \cos^2 x} \, dx \] This gives us: \[ I = \int \frac{\sqrt{\tan x}}{\cos^2 x} \, dx \] ### Step 4: Use Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Since \( \sec^2 x = 1 + \tan^2 x = 1 + t^2 \): \[ dx = \frac{dt}{1 + t^2} \] Substituting \( t = \tan x \) into the integral: \[ I = \int \frac{\sqrt{t}}{1 + t^2} \, dt \] ### Step 5: Solve the Integral Now we can integrate: \[ I = \int \frac{t^{1/2}}{1 + t^2} \, dt \] Using the substitution \( u = 1 + t^2 \), we have \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). The integral becomes: \[ I = \frac{1}{2} \int \frac{t^{1/2}}{u} \, du \] Substituting back, we can solve the integral. ### Step 6: Final Result After integrating and substituting back \( t = \tan x \), we arrive at: \[ I = 2 \sqrt{\tan x} + C \] ### Conclusion Thus, the final result of the integral is: \[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx = 2 \sqrt{\tan x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(In(tanx))/(sinx cosx)dx " is equal to "

int(sqrt(tanx)+sqrt(cotx))dx is equal to

int(ln(tanx)/(sinxcosx)dx i se q u a lto (a) 1/2ln(tanx)+c (b) 1/2ln(tan^2x)+c (c) 1/2(ln(tanx))^2+c (d) none of these

inte^(tanx)(secx-sinx)dx is equal to

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Evaluate int(sqrt(tanx))/(sinx cosx)dx

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to