Home
Class 12
MATHS
If [ f(x) g^('') (x) - f^('') g(x)]dx is...

If `[ f(x) g^('') (x) - f^('') g(x)]dx` is equal to :

A

`(f(x))/(g'(x))`

B

`f'(x)g(x)-f(x)g'(x)`

C

`f(x)g'(x)-f(x)g(x)`

D

`f(x)g'(x)+f'(x)g(x)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

Evaluate: int[f(x)g''(x)-f''(x)g(x)]dx

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

If f(x) =(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)) ,k=1,2,3,……and g(x)=f^(1998)(x) then int_(1//e)^(1) g(x)dx is equal to

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to