Home
Class 12
MATHS
The value of int(0)^(pi//2)(cos2x)/((sin...

The value of `int_(0)^(pi//2)(cos2x)/((sinx+cosx)^(2))dx` is equal to

A

`(-1)/(sinx+cos)+C`

B

`log(sinx+cosx)+C`

C

`log(sinx-cosx)+C`

D

`log(sinx+cosx)^(2)+C`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/((sinx+cosx)^(2))dx is equal to

The value of int_(0)^(pi//2)(asinx+bcosx)/(sinx+cosx)dx is equal to

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0