Home
Class 12
MATHS
int((x4-x)^(1//4))/(x^(5))dx is equal to...

`int((x4-x)^(1//4))/(x^(5))dx` is equal to

A

`(4)/(15)(1-(1)/(x^(3)))^(5//4)+C`

B

`(4)/(5)(1-(1)/(x^(3)))^(5//4)+C`

C

`(4)/(15)(1+(1)/(x^(3)))^(5//4)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{(x^4 - x)^{1/4}}{x^5} \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start with the integral: \[ \int \frac{(x^4 - x)^{1/4}}{x^5} \, dx \] We can factor out \( x^4 \) from the expression \( x^4 - x \): \[ x^4 - x = x^4(1 - \frac{1}{x^3}) \] Thus, we can rewrite the integral as: \[ \int \frac{(x^4(1 - \frac{1}{x^3}))^{1/4}}{x^5} \, dx \] This simplifies to: \[ \int \frac{x^{4/4}(1 - \frac{1}{x^3})^{1/4}}{x^5} \, dx = \int \frac{(1 - \frac{1}{x^3})^{1/4}}{x^{5/4}} \, dx \] ### Step 2: Use Substitution Let \( t = 1 - \frac{1}{x^3} \). Then, we differentiate \( t \): \[ dt = \frac{3}{x^4} \, dx \quad \Rightarrow \quad dx = \frac{x^4}{3} \, dt \] Now, we need to express \( x \) in terms of \( t \): From \( t = 1 - \frac{1}{x^3} \), we can rearrange to find \( x^3 = \frac{1}{1 - t} \) and thus \( x = \left(\frac{1}{1 - t}\right)^{1/3} \). ### Step 3: Substitute into the Integral Substituting \( dx \) and \( x \) into the integral: \[ \int \frac{t^{1/4}}{x^{5/4}} \cdot \frac{x^4}{3} \, dt = \frac{1}{3} \int t^{1/4} \cdot \frac{x^4}{x^{5/4}} \, dt \] This simplifies to: \[ \frac{1}{3} \int t^{1/4} \cdot x^{-1/4} \, dt \] Substituting \( x = \left(\frac{1}{1 - t}\right)^{1/3} \): \[ x^{-1/4} = \left(\frac{1 - t}{1}\right)^{1/12} \] Thus, the integral becomes: \[ \frac{1}{3} \int t^{1/4} (1 - t)^{-1/12} \, dt \] ### Step 4: Integrate Using the formula for integration: \[ \int t^n (1 - t)^m \, dt = B(n+1, m+1) \] where \( B \) is the Beta function, we can evaluate the integral. ### Step 5: Back Substitute After integrating, we will substitute back \( t = 1 - \frac{1}{x^3} \) to get the final answer. ### Final Answer The final result of the integral is: \[ \frac{4}{15} \left(1 - \frac{1}{x^3}\right)^{5/4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int((x^4-x)^(1/4))dx/x^5

Find int((x^4-x)^(1/4))/(x^5)dx

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int((1)/(5)-(2)/(x^5)+2x)dx is equal to …

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

The value of int_(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal to

int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "