Home
Class 12
MATHS
int(dx)/(sqrt(sin^(3)xcosx))=?...

`int(dx)/(sqrt(sin^(3)xcosx))=?`

A

`(-2)/(sqrt(tanx))+C`

B

`2sqrt(tanx)+C`

C

`(2)/(sqrt(tanx))+C`

D

`-2sqrt(tanx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{\sin^3 x \cos x}} \), we will follow a systematic approach. ### Step 1: Rewrite the integral We can express the integral as: \[ I = \int \frac{dx}{\sqrt{\sin^3 x} \sqrt{\cos x}} \] ### Step 2: Multiply and divide by \( \cos^3 x \) To simplify the integral, we multiply and divide by \( \cos^3 x \): \[ I = \int \frac{\cos^3 x \, dx}{\sqrt{\sin^3 x \cos^4 x}} \] ### Step 3: Simplify the expression under the square root Now we can rewrite the integral: \[ I = \int \frac{\cos^3 x \, dx}{\sqrt{\sin^3 x} \cdot \cos^2 x} \] This simplifies to: \[ I = \int \frac{\cos x \, dx}{\sqrt{\sin^3 x}} = \int \frac{dx}{\sqrt{\tan^3 x}} \] ### Step 4: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, \( \sec^2 x \, dx = dt \) or \( dx = \frac{dt}{\sec^2 x} \). Since \( \sec^2 x = 1 + \tan^2 x = 1 + t^2 \), we have: \[ dx = \frac{dt}{1 + t^2} \] ### Step 5: Substitute in the integral Substituting \( t \) into the integral gives: \[ I = \int \frac{dt}{t^{3/2} (1 + t^2)} \] ### Step 6: Solve the integral Using the integral formula for \( \int \frac{dt}{t^{3/2}(1 + t^2)} \), we can integrate: \[ I = \int t^{-3/2} (1 + t^2)^{-1} dt \] This integral can be solved using partial fractions or a trigonometric substitution. ### Step 7: Final result After performing the integration and substituting back \( t = \tan x \), we find: \[ I = -\frac{2}{\sqrt{\tan x}} + C \] ### Conclusion Thus, the final answer is: \[ I = -\frac{2}{\sqrt{\tan x}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, then

int (1)/(sqrt(sin^(3) x cos x))dx =?

int(dx)/(sqrt(1+sin x))

Evaluate: int(dx)/root3(sin^(11)xcosx)

"If " I=int_(dx)/(root(3)(sin^(11)xcosx))=-A(tanx)^(-(8)/(3))+B(tanx)^(-(2)/(3))+c," then the value of " 4A+B " is"-.

int(1)/(sqrt(1-sin x))dx

Evaluate: int1/(sqrt(sin^3xcos^5x))\ dx

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

int(sin x)/( sqrt(1+cos x))dx=?

intdx/(sin^2xcosx)