Home
Class 12
MATHS
The value of the integral int(1+x^(2))/(...

The value of the integral `int(1+x^(2))/(1+x^(4))dx` is equal to

A

`tan^(-1)x^(2)+C`

B

`(1)/(sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))`

C

`(1)/(2sqrt(2))log((x^(2)+sqrt(2)x+1)/(x^(2)-sqrt(2)x+1))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + x^2}{1 + x^4} \, dx \), we will follow a step-by-step approach. ### Step 1: Simplify the Integral We start by dividing the numerator and the denominator by \( x^2 \): \[ I = \int \frac{1 + x^2}{1 + x^4} \, dx = \int \frac{\frac{1}{x^2} + 1}{\frac{1}{x^2} + x^2} \, dx \] ### Step 2: Rewrite the Integral Now we can rewrite the integral as follows: \[ I = \int \frac{1 + \frac{1}{x^2}}{\frac{1}{x^2} + x^2} \, dx \] ### Step 3: Separate the Terms Next, we can separate the terms in the integral: \[ I = \int \left( \frac{1}{x^2 + 1} + \frac{1}{x^2} \right) \, dx \] ### Step 4: Use a Substitution To solve the integral, we will make a substitution. Let: \[ t = x - \frac{1}{x} \] Differentiating both sides gives: \[ dt = \left(1 + \frac{1}{x^2}\right) \, dx \] This means: \[ dx = \frac{dt}{1 + \frac{1}{x^2}} \] ### Step 5: Rewrite the Integral in Terms of \( t \) Now substituting \( dt \) into the integral, we have: \[ I = \int \frac{dt}{t^2 + 2} \] ### Step 6: Solve the Integral This integral can be solved using the formula for the integral of the form \( \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \): \[ I = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{t}{\sqrt{2}} \right) + C \] ### Step 7: Substitute Back for \( t \) Now we substitute back for \( t \): \[ I = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{x - \frac{1}{x}}{\sqrt{2}} \right) + C \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{x^2 - 1}{\sqrt{2} x} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int _0^oo 1/(1+x^4)dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is