Home
Class 12
MATHS
If l^(r )(x) means log log log … x, the ...

If `l^(r )(x)` means log log log … x, the log being repeated r times, then `int[xl(x)l^(2)(x)l^(3)(x) ... l^(r)(x)]^(-1) dx` is equal to

A

`l^(r+1)(x)+C`

B

`(l^(r+1)(x))/(r+1)+C`

C

`l^(r)(x)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If l^(prime)(x) means logloglog x , the log being repeated r times, then int[x l(x)l^2(x)l^3(x) l^(prime)(x)]^(-1)d s is equal to l^(r+1)(x)+C (b) (l^(r+1)(x))/(r+1)+C l^r(x)+C (d) none of these

If l^r(x) means logloglog.......x being repeated r times, then int [ (x l(x) l^2(x) l^3(x) .... l^r (x)]^(-1) dx is equal to :

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

int(log(x+1)-logx)/(x(x+1))dx is equal to :

int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx is equal to

int (f'(x))/( f(x) log(f(x)))dx is equal to

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

int ln(1+x)^(1+x)dx

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :