Home
Class 12
MATHS
intx^(-2//3)(1+x^(1//2))^(-5//3) dx is e...

`intx^(-2//3)(1+x^(1//2))^(-5//3)` dx is equal to

A

`3(1+x^(-1//2))^(-1//3)+C`

B

`3(1+x^(-1//2))^(-2//3)+C`

C

`3(1+x^(1//2))^(-2//3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x^{-\frac{2}{3}} (1 + x^{\frac{1}{2}})^{-\frac{5}{3}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int x^{-\frac{2}{3}} (1 + x^{\frac{1}{2}})^{-\frac{5}{3}} \, dx \] ### Step 2: Factor Out \( x^{\frac{1}{2}} \) Notice that we can factor out \( x^{\frac{1}{2}} \) from the term \( (1 + x^{\frac{1}{2}})^{-\frac{5}{3}} \): \[ I = \int x^{-\frac{2}{3}} \left( x^{\frac{1}{2}} \left( \frac{1}{x^{\frac{1}{2}}} + 1 \right) \right)^{-\frac{5}{3}} \, dx \] This simplifies to: \[ I = \int x^{-\frac{2}{3}} x^{-\frac{5}{6}} \left( \frac{1}{x^{\frac{1}{2}}} + 1 \right)^{-\frac{5}{3}} \, dx \] ### Step 3: Combine Exponents Now, we combine the exponents: \[ I = \int x^{-\frac{2}{3} - \frac{5}{6}} \left( \frac{1}{x^{\frac{1}{2}}} + 1 \right)^{-\frac{5}{3}} \, dx \] Finding a common denominator for the exponents: \[ -\frac{2}{3} = -\frac{4}{6} \quad \text{and} \quad -\frac{5}{6} = -\frac{5}{6} \] Thus: \[ -\frac{4}{6} - \frac{5}{6} = -\frac{9}{6} = -\frac{3}{2} \] So we have: \[ I = \int x^{-\frac{3}{2}} \left( \frac{1}{x^{\frac{1}{2}}} + 1 \right)^{-\frac{5}{3}} \, dx \] ### Step 4: Substitute Let \( t = x^{-\frac{1}{2}} + 1 \). Then, differentiating gives: \[ dt = -\frac{1}{2} x^{-\frac{3}{2}} \, dx \quad \Rightarrow \quad dx = -2 x^{\frac{3}{2}} \, dt \] Substituting \( x^{-\frac{3}{2}} \) gives us: \[ x^{-\frac{3}{2}} = -2 dt \] Thus, we can rewrite the integral: \[ I = -2 \int t^{-\frac{5}{3}} \, dt \] ### Step 5: Integrate Now we integrate: \[ I = -2 \left( \frac{t^{-\frac{5}{3} + 1}}{-\frac{5}{3} + 1} \right) + C \] This simplifies to: \[ I = -2 \left( \frac{t^{-\frac{2}{3}}}{\frac{-2}{3}} \right) + C = 3 t^{-\frac{2}{3}} + C \] ### Step 6: Substitute Back Now substituting back for \( t \): \[ I = 3 \left( x^{-\frac{1}{2}} + 1 \right)^{-\frac{2}{3}} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = 3 (1 + x^{-\frac{1}{2}})^{-\frac{2}{3}} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

intx^3dx is equal to …

intx^5dx is equal to …

intx^(1/3)sin(x^(4/3))dx

intx^2 dx is equal to ..

intx^3/(x+1)dx is equal to:

intx^3/(x+1)dx is equal to:

intx2^(ln(x^(2)+1))dx is equal to

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

int(dx)/((x^3-1)^(2/3)x^2) is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Exercise
  1. The value of the integral int(1+x^(2))/(1+x^(4))dx is equal to

    Text Solution

    |

  2. If l^(r )(x) means log log log … x, the log being repeated r times, th...

    Text Solution

    |

  3. intx^(-2//3)(1+x^(1//2))^(-5//3) dx is equal to

    Text Solution

    |

  4. int(x^(3)-1)/(x^(3)+x)dx is equal to

    Text Solution

    |

  5. int(cosx+xsinx)/(x^(2)+xcosx)dx= . . . .

    Text Solution

    |

  6. The value of int(cos2x)/(cosx) dx is equal to

    Text Solution

    |

  7. int(dx)/(x(x^(n)+1)) " is equal to"

    Text Solution

    |

  8. int(asqrt(x))/(sqrt(x))dx equals

    Text Solution

    |

  9. If int(dx)/(5+4cosx)=Ptan^(-1)(mtanx/2)+C then,

    Text Solution

    |

  10. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  11. int (log (x+1) - log x)/(x(x-1)) dx is equal to :

    Text Solution

    |

  12. Let x^(2)ne pi-1, n in N, then intxsqrt((2sin(x^(2)+1)-sin2(x^(2)+1)...

    Text Solution

    |

  13. Given, f(x)=|(0, x^(2)-sin x, cos x-2),(sin x-x^(2),0,1-2x),(2-cos x,2...

    Text Solution

    |

  14. int(dx)/(x^(1//2)(1+x^2)^(5//4)) is equal to :

    Text Solution

    |

  15. int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

    Text Solution

    |

  16. int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

    Text Solution

    |

  17. int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

    Text Solution

    |

  18. The antiderivative of (3^(x))/(sqrt(1-9^(x))) with respect to x is

    Text Solution

    |

  19. Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equa...

    Text Solution

    |

  20. If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+s...

    Text Solution

    |