Home
Class 12
MATHS
int(cosx+xsinx)/(x^(2)+xcosx)dx= . . . ...

`int(cosx+xsinx)/(x^(2)+xcosx)dx= ` . . . .

A

`log(x(x+cosx))+C`

B

`log((x)/(x+cosx))+C`

C

`log((x+cosx)/(x))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos x + x \sin x}{x^2 + x \cos x} \, dx, \] we will follow a systematic approach. ### Step 1: Rewrite the Integral We start by rewriting the integral \( I \): \[ I = \int \frac{\cos x + x \sin x}{x^2 + x \cos x} \, dx. \] ### Step 2: Factor the Numerator We can factor out \( x \) from the numerator: \[ I = \int \frac{x(x + \cos x) + (\cos x)}{x^2 + x \cos x} \, dx. \] ### Step 3: Split the Numerator Next, we will split the numerator into two parts: \[ I = \int \left( \frac{x + \cos x}{x(x + \cos x)} + \frac{\sin x - 1}{x + \cos x} \right) \, dx. \] ### Step 4: Separate the Integrals Now we can separate the integrals: \[ I = \int \frac{1}{x} \, dx + \int \frac{\sin x - 1}{x + \cos x} \, dx. \] ### Step 5: Solve the First Integral The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \ln |x| + C_1. \] ### Step 6: Solve the Second Integral For the second integral, we will use substitution. Let \[ t = x + \cos x. \] Then, differentiating gives us: \[ dt = (1 - \sin x) \, dx. \] We can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{1 - \sin x}. \] Now, we rewrite the integral: \[ \int \frac{\sin x - 1}{t} \, \frac{dt}{1 - \sin x}. \] This simplifies to: \[ -\int \frac{1}{t} \, dt = -\ln |t| + C_2 = -\ln |x + \cos x| + C_2. \] ### Step 7: Combine the Results Now we combine both integrals: \[ I = \ln |x| - \ln |x + \cos x| + C, \] where \( C = C_1 + C_2 \). ### Step 8: Final Result Using the properties of logarithms, we can combine the logarithms: \[ I = \ln \left| \frac{x}{x + \cos x} \right| + C. \] Thus, the final result for the integral is: \[ \int \frac{\cos x + x \sin x}{x^2 + x \cos x} \, dx = \ln \left| \frac{x}{x + \cos x} \right| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(cosx/x-sinxlogx)dx

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

inte^(x)(cosx-sinx)dx

int (cosx)/(sin^5x) dx

int e^x(sinx+cosx)dx=

int((1+cosx))/(x+sinx)dx

int (cosx-cos2x)/(1-cosx) dx

inte^(x)(sinx+cosx)dx=?

int(sin2x)/((sinx+cosx)^2)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Exercise
  1. intx^(-2//3)(1+x^(1//2))^(-5//3) dx is equal to

    Text Solution

    |

  2. int(x^(3)-1)/(x^(3)+x)dx is equal to

    Text Solution

    |

  3. int(cosx+xsinx)/(x^(2)+xcosx)dx= . . . .

    Text Solution

    |

  4. The value of int(cos2x)/(cosx) dx is equal to

    Text Solution

    |

  5. int(dx)/(x(x^(n)+1)) " is equal to"

    Text Solution

    |

  6. int(asqrt(x))/(sqrt(x))dx equals

    Text Solution

    |

  7. If int(dx)/(5+4cosx)=Ptan^(-1)(mtanx/2)+C then,

    Text Solution

    |

  8. If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))), then I equals

    Text Solution

    |

  9. int (log (x+1) - log x)/(x(x-1)) dx is equal to :

    Text Solution

    |

  10. Let x^(2)ne pi-1, n in N, then intxsqrt((2sin(x^(2)+1)-sin2(x^(2)+1)...

    Text Solution

    |

  11. Given, f(x)=|(0, x^(2)-sin x, cos x-2),(sin x-x^(2),0,1-2x),(2-cos x,2...

    Text Solution

    |

  12. int(dx)/(x^(1//2)(1+x^2)^(5//4)) is equal to :

    Text Solution

    |

  13. int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

    Text Solution

    |

  14. int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

    Text Solution

    |

  15. int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

    Text Solution

    |

  16. The antiderivative of (3^(x))/(sqrt(1-9^(x))) with respect to x is

    Text Solution

    |

  17. Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equa...

    Text Solution

    |

  18. If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+s...

    Text Solution

    |

  19. The primitive of the function f (x) =(2x+1)|cosx|, when (pi)/(2)ltxl...

    Text Solution

    |

  20. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |