Home
Class 12
MATHS
int(x^(2))/((a+bx^(2))^(5//2))dx is equa...

`int(x^(2))/((a+bx^(2))^(5//2))dx` is equal to

A

`-(1)/(3a)((x^(2))/(a+bx^(2)))^(3//2)+C`

B

`(1)/(3a)((x^(2))/(a+bx^(2)))^(3//2)+C`

C

`(1)/(2a)((x^(2))/(a+bx^(2)))^(2//3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2}{(a + b x^2)^{5/2}} \, dx, \] we will use substitution and integration techniques. Let's go through the solution step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{x^2}{(a + b x^2)^{5/2}} \, dx. \] ### Step 2: Use Substitution Let’s use the substitution: \[ t = a + b x^2. \] Then, differentiating both sides gives: \[ dt = 2b x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2b x}. \] From our substitution, we can express \(x^2\) in terms of \(t\): \[ x^2 = \frac{t - a}{b}. \] ### Step 3: Substitute in the Integral Now, we substitute \(x^2\) and \(dx\) into the integral: \[ \int \frac{\frac{t - a}{b}}{t^{5/2}} \cdot \frac{dt}{2b x}. \] We need to express \(x\) in terms of \(t\). From \(t = a + b x^2\), we have: \[ x^2 = \frac{t - a}{b} \quad \Rightarrow \quad x = \sqrt{\frac{t - a}{b}}. \] Thus, \(dx\) becomes: \[ dx = \frac{dt}{2b \sqrt{\frac{t - a}{b}}} = \frac{dt}{2\sqrt{b(t - a)}}. \] ### Step 4: Substitute Everything Back Now substituting back into the integral gives: \[ \int \frac{\frac{t - a}{b}}{t^{5/2}} \cdot \frac{dt}{2\sqrt{b(t - a)}}. \] This simplifies to: \[ \frac{1}{2b\sqrt{b}} \int \frac{(t - a)}{t^{5/2}\sqrt{t - a}} \, dt. \] ### Step 5: Simplify the Integral Now, we can separate the integral into two parts: \[ \int \frac{t}{t^{5/2}} \, dt - a \int \frac{1}{t^{5/2}} \, dt. \] This simplifies to: \[ \int t^{-3/2} \, dt - a \int t^{-5/2} \, dt. \] ### Step 6: Integrate Each Part Now we can integrate each part: 1. \(\int t^{-3/2} \, dt = -2 t^{-1/2} + C_1\) 2. \(\int t^{-5/2} \, dt = -\frac{2}{3} t^{-3/2} + C_2\) Putting these results back into our expression gives: \[ \frac{1}{2b\sqrt{b}} \left( -2 t^{-1/2} + a \cdot \frac{2}{3} t^{-3/2} \right) + C. \] ### Step 7: Substitute Back for \(t\) Now we substitute back \(t = a + b x^2\): \[ = \frac{-1}{b\sqrt{b}} (a + b x^2)^{-1/2} + \frac{a}{3b\sqrt{b}} (a + b x^2)^{-3/2} + C. \] ### Step 8: Final Simplification This can be simplified further to: \[ = \frac{1}{3a} \frac{x^2}{(a + b x^2)^{3/2}} + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^2}{(a + b x^2)^{5/2}} \, dx = \frac{1}{3a} \frac{x^2}{(a + b x^2)^{3/2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

int(1)/(x^(1//2)(1+x^(2))^(5//4))dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int_(0)^(2) [x^(2)]dx is equal to

int(x+(1)/(x))^(n+5).((x^(2)-1)/(x^(2)))dx is equal to

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Exercise
  1. Let x^(2)ne pi-1, n in N, then intxsqrt((2sin(x^(2)+1)-sin2(x^(2)+1)...

    Text Solution

    |

  2. Given, f(x)=|(0, x^(2)-sin x, cos x-2),(sin x-x^(2),0,1-2x),(2-cos x,2...

    Text Solution

    |

  3. int(dx)/(x^(1//2)(1+x^2)^(5//4)) is equal to :

    Text Solution

    |

  4. int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

    Text Solution

    |

  5. int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

    Text Solution

    |

  6. int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

    Text Solution

    |

  7. The antiderivative of (3^(x))/(sqrt(1-9^(x))) with respect to x is

    Text Solution

    |

  8. Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equa...

    Text Solution

    |

  9. If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+s...

    Text Solution

    |

  10. The primitive of the function f (x) =(2x+1)|cosx|, when (pi)/(2)ltxl...

    Text Solution

    |

  11. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  12. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  13. The value of the integral int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx...

    Text Solution

    |

  14. Evaluate: int(x^2-1)/(xsqrt((x^2+alphax+1)(x^2+betax+1)))dx

    Text Solution

    |

  15. Evaluate int(e^(2x)-2e^(x))/(e^(2x)+1)dx

    Text Solution

    |

  16. int(1)/(cosx-sinx)dx is equal to

    Text Solution

    |

  17. int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

    Text Solution

    |

  18. int (f(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  19. Evaluate: int(e^x)/((1+e^x)(2+e^x))\ dx

    Text Solution

    |

  20. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |