Home
Class 12
MATHS
int(1)/(cosx-sinx)dx is equal to...

`int(1)/(cosx-sinx)dx` is equal to

A

`(1)/(sqrt(2))log|tan((x)/(2)+(3pi)/(8))|+C`

B

`(1)/(sqrt(2))log|"cot"(x)/(2)|+C`

C

`(1)/(sqrt(2))log|tan((x)/(2)-(3pi)/(8))|+C`

D

`(1)/(sqrt(2))log|tan((x)/(2)-(pi)/(8))|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\cos x - \sin x} \, dx \), we can follow these steps: ### Step 1: Multiply and Divide by \( \frac{1}{\sqrt{2}} \) We start by multiplying and dividing the integrand by \( \frac{1}{\sqrt{2}} \): \[ I = \int \frac{1}{\cos x - \sin x} \, dx = \int \frac{1/\sqrt{2}}{(1/\sqrt{2}) \cos x - (1/\sqrt{2}) \sin x} \, dx \] ### Step 2: Rewrite the Integral This can be rewritten as: \[ I = \frac{1}{\sqrt{2}} \int \frac{1}{\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x} \, dx \] ### Step 3: Use Trigonometric Identities Using the fact that \( \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \) and \( \frac{1}{\sqrt{2}} = \sin \frac{\pi}{4} \), we can express the integral as: \[ I = \frac{1}{\sqrt{2}} \int \frac{1}{\cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x} \, dx \] ### Step 4: Apply the Cosine Addition Formula Using the cosine addition formula \( \cos(a + b) = \cos a \cos b - \sin a \sin b \): \[ I = \frac{1}{\sqrt{2}} \int \frac{1}{\cos\left(x + \frac{\pi}{4}\right)} \, dx \] ### Step 5: Rewrite the Integral in Terms of Secant This can be rewritten as: \[ I = \frac{1}{\sqrt{2}} \int \sec\left(x + \frac{\pi}{4}\right) \, dx \] ### Step 6: Integrate Secant The integral of secant is known: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] Thus, we have: \[ I = \frac{1}{\sqrt{2}} \left( \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \right) \] ### Step 7: Substitute Back Now, substituting back \( x + \frac{\pi}{4} \): \[ I = \frac{1}{\sqrt{2}} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{1}{\sqrt{2}} \ln \left| \sec\left(x + \frac{\pi}{4}\right) + \tan\left(x + \frac{\pi}{4}\right) \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

inte^(x)(cosx-sinx)dx

int(dx)/(cosx+sinx) is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

int_(0)^(pi//2) cosx\ e^(sinx)\ dx is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int1/(cosx+sqrt(3)sinx) dx equals

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int(In(tanx))/(sinx cosx)dx " is equal to "

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Exercise
  1. Let x^(2)ne pi-1, n in N, then intxsqrt((2sin(x^(2)+1)-sin2(x^(2)+1)...

    Text Solution

    |

  2. Given, f(x)=|(0, x^(2)-sin x, cos x-2),(sin x-x^(2),0,1-2x),(2-cos x,2...

    Text Solution

    |

  3. int(dx)/(x^(1//2)(1+x^2)^(5//4)) is equal to :

    Text Solution

    |

  4. int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

    Text Solution

    |

  5. int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

    Text Solution

    |

  6. int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

    Text Solution

    |

  7. The antiderivative of (3^(x))/(sqrt(1-9^(x))) with respect to x is

    Text Solution

    |

  8. Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equa...

    Text Solution

    |

  9. If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+s...

    Text Solution

    |

  10. The primitive of the function f (x) =(2x+1)|cosx|, when (pi)/(2)ltxl...

    Text Solution

    |

  11. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  12. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  13. The value of the integral int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx...

    Text Solution

    |

  14. Evaluate: int(x^2-1)/(xsqrt((x^2+alphax+1)(x^2+betax+1)))dx

    Text Solution

    |

  15. Evaluate int(e^(2x)-2e^(x))/(e^(2x)+1)dx

    Text Solution

    |

  16. int(1)/(cosx-sinx)dx is equal to

    Text Solution

    |

  17. int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

    Text Solution

    |

  18. int (f(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  19. Evaluate: int(e^x)/((1+e^x)(2+e^x))\ dx

    Text Solution

    |

  20. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |