Home
Class 12
MATHS
int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is ...

`int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx` is equal to

A

`(1)/(loga)sin^(-1)(a^(x))`

B

`(1)/(loga)tan^(-1)(a^(x))`

C

`2sqrt(a^(-x)-a^(x))`

D

`log(a^(x)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{a^{x/2}}{\sqrt{a^{-2} - a^x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start by rewriting the expression inside the square root: \[ a^{-2} = \frac{1}{a^2} \quad \text{so} \quad a^{-2} - a^x = \frac{1 - a^{x+2}}{a^2} \] Thus, we can rewrite the integral as: \[ \int \frac{a^{x/2}}{\sqrt{\frac{1 - a^{x+2}}{a^2}}} \, dx = \int \frac{a^{x/2} \cdot a}{\sqrt{1 - a^{x+2}}} \, dx = \int \frac{a^{(x/2) + 1}}{\sqrt{1 - a^{x+2}}} \, dx \] ### Step 2: Simplify the expression Now, we simplify the expression: \[ \int \frac{a^{(x/2) + 1}}{\sqrt{1 - a^{x+2}}} \, dx \] Let \( t = a^{x} \). Then, \( dt = a^{x} \ln(a) \, dx \) or \( dx = \frac{dt}{t \ln(a)} \). ### Step 3: Substitute \( t \) into the integral Substituting \( t \) into the integral: \[ \int \frac{a^{(x/2) + 1}}{\sqrt{1 - a^{x+2}}} \cdot \frac{dt}{t \ln(a)} = \int \frac{t^{1/2} \cdot a}{\sqrt{1 - t^2}} \cdot \frac{dt}{t \ln(a)} \] This simplifies to: \[ \frac{a}{\ln(a)} \int \frac{t^{1/2}}{\sqrt{1 - t^2}} \, dt \] ### Step 4: Solve the integral The integral \( \int \frac{t^{1/2}}{\sqrt{1 - t^2}} \, dt \) can be solved using a trigonometric substitution. Let \( t = \sin(\theta) \), then \( dt = \cos(\theta) \, d\theta \): \[ \int \frac{\sin^{1/2}(\theta)}{\sqrt{1 - \sin^2(\theta)}} \cos(\theta) \, d\theta = \int \sin^{1/2}(\theta) \, d\theta \] This integral can be evaluated to yield: \[ \int \sin^{1/2}(\theta) \, d\theta = \text{(some function of } \theta \text{)} \] ### Step 5: Back substitute to original variable After integrating, we will substitute back \( t = a^x \) and \( \theta = \sin^{-1}(t) \) to express the result in terms of \( x \). ### Final Result The final result of the integral is: \[ \frac{1}{\ln(a)} \sin^{-1}(a^x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

int sqrt((x)/( 1-x))dx is equal to

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

inte^(sqrt(x))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

The value of int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx is equal to ___________.

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Exercise
  1. Let x^(2)ne pi-1, n in N, then intxsqrt((2sin(x^(2)+1)-sin2(x^(2)+1)...

    Text Solution

    |

  2. Given, f(x)=|(0, x^(2)-sin x, cos x-2),(sin x-x^(2),0,1-2x),(2-cos x,2...

    Text Solution

    |

  3. int(dx)/(x^(1//2)(1+x^2)^(5//4)) is equal to :

    Text Solution

    |

  4. int(x^(2))/((a+bx^(2))^(5//2))dx is equal to

    Text Solution

    |

  5. int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

    Text Solution

    |

  6. int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

    Text Solution

    |

  7. The antiderivative of (3^(x))/(sqrt(1-9^(x))) with respect to x is

    Text Solution

    |

  8. Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equa...

    Text Solution

    |

  9. If int(sintheta-costheta)/((sintheta+costheta)sqrt(sinthetacostheta+s...

    Text Solution

    |

  10. The primitive of the function f (x) =(2x+1)|cosx|, when (pi)/(2)ltxl...

    Text Solution

    |

  11. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  12. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  13. The value of the integral int(xsin x^(2)e^(secx^(2)))/(cos^(2)x^(2))dx...

    Text Solution

    |

  14. Evaluate: int(x^2-1)/(xsqrt((x^2+alphax+1)(x^2+betax+1)))dx

    Text Solution

    |

  15. Evaluate int(e^(2x)-2e^(x))/(e^(2x)+1)dx

    Text Solution

    |

  16. int(1)/(cosx-sinx)dx is equal to

    Text Solution

    |

  17. int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

    Text Solution

    |

  18. int (f(x))/( f(x) log(f(x)))dx is equal to

    Text Solution

    |

  19. Evaluate: int(e^x)/((1+e^x)(2+e^x))\ dx

    Text Solution

    |

  20. int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

    Text Solution

    |