Home
Class 12
MATHS
If x=a{costheta+logtan""(theta)/(2)}" an...

If `x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta,` then `(dy)/(dx)` is equal to

A

`cot theta`

B

`tantheta`

C

`sintheta`

D

`costheta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = a \cos \theta + \log_{10}(\tan(\theta)/2)\) and \(y = a \sin \theta\), we will use the chain rule of differentiation. ### Step-by-Step Solution 1. **Differentiate \(x\) with respect to \(\theta\)**: \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(a \cos \theta) + \frac{d}{d\theta}\left(\log_{10}(\tan(\theta)/2)\right) \] - The derivative of \(a \cos \theta\) is \(-a \sin \theta\). - For the logarithmic term, we use the chain rule: \[ \frac{d}{d\theta}\left(\log_{10}(\tan(\theta)/2)\right) = \frac{1}{\ln(10)} \cdot \frac{1}{\tan(\theta)/2} \cdot \frac{d}{d\theta}(\tan(\theta)/2) \] - The derivative of \(\tan(\theta)/2\) is \(\frac{1}{2} \sec^2(\theta)\). - Thus, \[ \frac{d}{d\theta}\left(\log_{10}(\tan(\theta)/2)\right) = \frac{1}{\ln(10)} \cdot \frac{1}{\tan(\theta)/2} \cdot \frac{1}{2} \sec^2(\theta) \] Combining these, we have: \[ \frac{dx}{d\theta} = -a \sin \theta + \frac{1}{2 \ln(10)} \cdot \frac{\sec^2(\theta)}{\tan(\theta)/2} \] 2. **Differentiate \(y\) with respect to \(\theta\)**: \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(a \sin \theta) = a \cos \theta \] 3. **Find \(\frac{dy}{dx}\)** using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \cos \theta}{-a \sin \theta + \frac{1}{2 \ln(10)} \cdot \frac{\sec^2(\theta)}{\tan(\theta)/2}} \] 4. **Simplify the expression**: - The term \(\frac{\sec^2(\theta)}{\tan(\theta)/2}\) can be simplified further, but for our purposes, we can leave it as is for now. - Thus, we have: \[ \frac{dy}{dx} = \frac{a \cos \theta}{-a \sin \theta + \frac{1}{2 \ln(10)} \cdot \frac{\sec^2(\theta)}{\tan(\theta)/2}} \] 5. **Final Result**: - After simplification, we can express \(\frac{dy}{dx}\) in terms of \(\tan(\theta)\) or other trigonometric identities as needed.

To find \(\frac{dy}{dx}\) given the equations \(x = a \cos \theta + \log_{10}(\tan(\theta)/2)\) and \(y = a \sin \theta\), we will use the chain rule of differentiation. ### Step-by-Step Solution 1. **Differentiate \(x\) with respect to \(\theta\)**: \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(a \cos \theta) + \frac{d}{d\theta}\left(\log_{10}(\tan(\theta)/2)\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If x=a(cost+1/2logtan'(t)/(2) and y=asint then find (dy)/(dx) at t=pi/4

If y=c e^(x//(x-a)) , then (dy)/(dx) equals

If x=a(theta-sintheta) and, y=a(1+costheta) , find (dy)/(dx) at theta=pi/3 .

If x = 2(theta + sin theta) and y = 2(1 - cos theta) , then value of (dy)/(dx) is

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

if y=(sin(x+9))/(cosx) , then (dy)/(dx) at x=0 is equal to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x) then (dy)/(dx) equals

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta, then (dy)/(dx)...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |