Home
Class 12
MATHS
If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and...

If `y=f(x^(3)),z=g(x^(2)),f'(x),=cosx` and `g'(x)=sinx," then "(dy)/(dz)` is

A

`(3x)/(2)cosx^(3)cosecx^(2)`

B

`(2)/(3)sinx^(3)secx^(2)`

C

`tanx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dz}\) given \(y = f(x^3)\) and \(z = g(x^2)\), where \(f'(x) = \cos x\) and \(g'(x) = \sin x\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(x\) We start with the function: \[ y = f(x^3) \] Using the chain rule, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = f'(x^3) \cdot \frac{d}{dx}(x^3) \] The derivative of \(x^3\) is \(3x^2\), so we have: \[ \frac{dy}{dx} = f'(x^3) \cdot 3x^2 \] ### Step 2: Substitute \(f'(x^3)\) We know that \(f'(x) = \cos x\). Therefore, substituting \(x^3\) into this gives: \[ f'(x^3) = \cos(x^3) \] Now we can substitute this back into our equation for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 3x^2 \cdot \cos(x^3) \] ### Step 3: Differentiate \(z\) with respect to \(x\) Now we differentiate \(z\): \[ z = g(x^2) \] Using the chain rule again, we differentiate \(z\) with respect to \(x\): \[ \frac{dz}{dx} = g'(x^2) \cdot \frac{d}{dx}(x^2) \] The derivative of \(x^2\) is \(2x\), so we have: \[ \frac{dz}{dx} = g'(x^2) \cdot 2x \] ### Step 4: Substitute \(g'(x^2)\) We know that \(g'(x) = \sin x\). Therefore, substituting \(x^2\) into this gives: \[ g'(x^2) = \sin(x^2) \] Now we can substitute this back into our equation for \(\frac{dz}{dx}\): \[ \frac{dz}{dx} = 2x \cdot \sin(x^2) \] ### Step 5: Find \(\frac{dy}{dz}\) Now we can find \(\frac{dy}{dz}\) using the chain rule: \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} \] Substituting the expressions we found: \[ \frac{dy}{dz} = \frac{3x^2 \cdot \cos(x^3)}{2x \cdot \sin(x^2)} \] We can simplify this: \[ \frac{dy}{dz} = \frac{3}{2} \cdot \frac{x^2}{x} \cdot \frac{\cos(x^3)}{\sin(x^2)} = \frac{3}{2} \cdot x \cdot \frac{\cos(x^3)}{\sin(x^2)} \] ### Final Answer Thus, the final expression for \(\frac{dy}{dz}\) is: \[ \frac{dy}{dz} = \frac{3}{2} x \cdot \cot(x^2) \]

To find \(\frac{dy}{dz}\) given \(y = f(x^3)\) and \(z = g(x^2)\), where \(f'(x) = \cos x\) and \(g'(x) = \sin x\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(x\) We start with the function: \[ y = f(x^3) \] Using the chain rule, we differentiate \(y\) with respect to \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, and g'(x) = sec x, " then find the value of of" lim_(xrarr0)((dy//dz))/(x)

"If "y=f(x^(3)),z=g(x^(5)),f'(x)=tan x, and g'(x) = sec x, " then find the value of of "lim_(xrarr0) ((dy//dz))/(x)

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)

if f(x)=e^(x) and g(x)=sinx , then the value of (f@g)(sqrt(2)) is

If y=f((2x-1)/(x^2+1)) and f^(prime)(x)=sinx^2 , find (dy)/(dx) .

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) ...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |