Home
Class 12
MATHS
Differentiate sec^-1""(1)/(2x^2-1) with...

Differentiate `sec^-1""(1)/(2x^2-1)` with respect to `sqrt(1-x^2)`

A

-4

B

4

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) We start with the function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] Using the chain rule, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \cdot \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) \] Now, we need to differentiate \( \frac{1}{2x^2 - 1} \): \[ \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) = -\frac{2x}{(2x^2 - 1)^2} \] Thus, substituting back, we have: \[ \frac{dy}{dx} = \frac{-2x}{(2x^2 - 1)^2 \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \] ### Step 2: Simplify \( \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1} \) We simplify: \[ \left(\frac{1}{2x^2 - 1}\right)^2 - 1 = \frac{1 - (2x^2 - 1)^2}{(2x^2 - 1)^2} \] Calculating \( 1 - (2x^2 - 1)^2 \): \[ = 1 - (4x^4 - 4x^2 + 1) = 4x^2 - 4x^4 \] Thus, \[ \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1} = \frac{\sqrt{4x^2(1 - x^2)}}{2x^2 - 1} \] ### Step 3: Substitute back into \( \frac{dy}{dx} \) Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-2x}{(2x^2 - 1)^2} \cdot \frac{(2x^2 - 1)}{\sqrt{4x^2(1 - x^2)}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-2x}{(2x^2 - 1) \sqrt{4x^2(1 - x^2)}} \] ### Step 4: Differentiate \( z \) with respect to \( x \) Next, we differentiate \( z = \sqrt{1 - x^2} \): \[ \frac{dz}{dx} = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 5: Find \( \frac{dy}{dz} \) Using the chain rule: \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} \] Thus, \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{1}{\frac{dz}{dx}} = \frac{dy}{dx} \cdot \left(-\frac{\sqrt{1 - x^2}}{x}\right) \] ### Step 6: Substitute \( \frac{dy}{dx} \) into \( \frac{dy}{dz} \) Substituting \( \frac{dy}{dx} \): \[ \frac{dy}{dz} = \frac{-2x}{(2x^2 - 1) \sqrt{4x^2(1 - x^2)}} \cdot \left(-\frac{\sqrt{1 - x^2}}{x}\right) \] This simplifies to: \[ \frac{dy}{dz} = \frac{2\sqrt{1 - x^2}}{(2x^2 - 1) \sqrt{4x^2}} \] ### Step 7: Evaluate at \( x = \frac{1}{2} \) Finally, we can evaluate \( \frac{dy}{dz} \) at \( x = \frac{1}{2} \): \[ \frac{dy}{dz} \bigg|_{x = \frac{1}{2}} = \frac{2\sqrt{1 - \left(\frac{1}{2}\right)^2}}{(2\left(\frac{1}{2}\right)^2 - 1) \sqrt{4\left(\frac{1}{2}\right)^2}} \] Calculating this gives: \[ = \frac{2\sqrt{1 - \frac{1}{4}}}{(2 \cdot \frac{1}{4} - 1) \sqrt{4 \cdot \frac{1}{4}}} = \frac{2\sqrt{\frac{3}{4}}}{(0) \cdot 1} \text{ (undefined)} \]

To differentiate \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) We start with the function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((1-x)/(1+x)) with respect to sqrt(1-x^2) , if -1 < x < 1 .

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate sqrt((1-x^2)/(1+x^2)) with respect to x .

Differentiate sin^(-1)(1/(sqrt(1+x^2))) with respect to x

Differentiate (2x+5)/(x^(2)-1) with respect to 'x'.

Differentiate tan^-1""((2x)/(1-x^2)) with respect to cos ^-1 ((1-x^2)/(1+x^2))

Differentiate sqrt(tan^(-1)(x/2)) with respect to x :

Differentiate tan^(-1)((1+a x)/(1-a x)) with respect to sqrt(1+a^2x^2)dot

Differentiate sin^(-1)(2a xsqrt(1-a^2x^2)) with respect to sqrt(1-a^2x^2) , if -1/(sqrt(2)) < ax<1/(sqrt(2)) .

Differentiate sin ^(-1) (1/sqrt(1+x^2)) with respect to 'x'

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |