Home
Class 12
MATHS
If f(x)=|{:(sectheta," "tan^(2)theta,1),...

If `f(x)=|{:(sectheta," "tan^(2)theta,1),(thetasecx," "tanx,x),(" "1,tanx-tantheta,0):}|`, then `f'(theta)` is

A

0

B

-1

C

independent of `theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(\theta) \) for the function defined by the determinant \[ f(\theta) = \begin{vmatrix} \sec \theta & \tan^2 \theta & 1 \\ \theta & \sec x & \tan x \\ x & 1 & \tan x - \tan \theta \end{vmatrix} \] we will differentiate this determinant with respect to \( \theta \). ### Step-by-Step Solution 1. **Write down the determinant**: \[ f(\theta) = \begin{vmatrix} \sec \theta & \tan^2 \theta & 1 \\ \theta & \sec x & \tan x \\ x & 1 & \tan x - \tan \theta \end{vmatrix} \] 2. **Differentiate with respect to \( \theta \)**: To differentiate a determinant, we can use the property that the derivative of a determinant can be computed by differentiating each row with respect to the variable of differentiation (here, \( \theta \)). 3. **Differentiate the first row**: - The derivative of \( \sec \theta \) is \( \sec \theta \tan \theta \). - The derivative of \( \tan^2 \theta \) is \( 2 \tan \theta \sec^2 \theta \). - The derivative of \( 1 \) is \( 0 \). Thus, the first row becomes: \[ \begin{vmatrix} \sec \theta \tan \theta & 2 \tan \theta \sec^2 \theta & 0 \\ \theta & \sec x & \tan x \\ x & 1 & \tan x - \tan \theta \end{vmatrix} \] 4. **Differentiate the second row**: The second row does not depend on \( \theta \), so it remains unchanged: \[ \begin{vmatrix} \sec \theta \tan \theta & 2 \tan \theta \sec^2 \theta & 0 \\ \theta & \sec x & \tan x \\ x & 1 & \tan x - \tan \theta \end{vmatrix} \] 5. **Differentiate the third row**: - The derivative of \( \tan x - \tan \theta \) with respect to \( \theta \) is \( -\sec^2 \theta \). Thus, the third row becomes: \[ \begin{vmatrix} \sec \theta \tan \theta & 2 \tan \theta \sec^2 \theta & 0 \\ \theta & \sec x & \tan x \\ x & 1 & -\sec^2 \theta \end{vmatrix} \] 6. **Evaluate the determinant**: Now we can evaluate the determinant using the cofactor expansion along the first row. The determinant can be calculated as: \[ f'(\theta) = \sec \theta \tan \theta \cdot \begin{vmatrix} \sec x & \tan x \\ 1 & -\sec^2 \theta \end{vmatrix} + 2 \tan \theta \sec^2 \theta \cdot \begin{vmatrix} \theta & \tan x \\ x & -\sec^2 \theta \end{vmatrix} \] 7. **Simplify the determinants**: Calculate the 2x2 determinants: - For the first determinant: \[ \begin{vmatrix} \sec x & \tan x \\ 1 & -\sec^2 \theta \end{vmatrix} = -\sec^2 \theta \sec x - \tan x \] - For the second determinant: \[ \begin{vmatrix} \theta & \tan x \\ x & -\sec^2 \theta \end{vmatrix} = -\theta \sec^2 \theta - x \tan x \] 8. **Put it all together**: Substitute back into the expression for \( f'(\theta) \): \[ f'(\theta) = \sec \theta \tan \theta (-\sec^2 \theta \sec x - \tan x) + 2 \tan \theta \sec^2 \theta (-\theta \sec^2 \theta - x \tan x) \] 9. **Final expression**: After simplification, we find that: \[ f'(\theta) = 1 \tan^2 \theta - \sec^2 \theta \]

To find \( f'(\theta) \) for the function defined by the determinant \[ f(\theta) = \begin{vmatrix} \sec \theta & \tan^2 \theta & 1 \\ \theta & \sec x & \tan x \\ x & 1 & \tan x - \tan \theta \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

If f(theta) = |(1,tan theta,1),(- tan theta,1,tan theta),(-1,-tan theta,1)|, " then the set " {f(theta ) : 0 le theta le (pi)/(2)} is

If f:[0,pi/2)->R is defined as f(theta)=|(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1)| Then, the range of f is

Prove that ("cosec "theta-sintheta)(sectheta-costheta)(tantheta+cottheta)=1

If f(x)=(2x)/(1+x^2)\ , show that f(tantheta)=sin2theta)

Prove that : (i) (1)/(sectheta-tantheta)+(1)/(sectheta+tantheta)=2sectheta " " (ii) ("cosec "theta+cottheta)/("cosec "theta-cottheta)=("cosec "theta+cottheta)^(2)

Prove: tantheta+1/(tantheta)=sectheta\ cos e c\ theta

If tantheta+1/(tantheta)=2 , find the value of tan^2theta+1/(tan^2theta)

(tantheta)/(sectheta-1)+(tantheta)/(sectheta+1) is equal to (a) 2tantheta (b) 2sectheta (c) 2\ cos e c\ theta (d) 2\ t a nthetasectheta

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. If f(x)=|{:(sectheta," "tan^(2)theta,1),(thetasecx," "tanx,x),(" "1,t...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |