Home
Class 12
MATHS
y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13)...

`y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13),(1,1,1)|,x in RR,` then `(d^2y)/(dx^2)+y` is equal to :

A

6

B

4

C

-10

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \frac{d^2y}{dx^2} + y \) where \( y(x) \) is given as the determinant: \[ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 1: Calculate the Determinant \( y(x) \) Using the determinant formula for a 3x3 matrix, we can calculate \( y(x) \): \[ y(x) = \sin x \begin{vmatrix} 17 & 13 \\ 1 & 1 \end{vmatrix} - \cos x \begin{vmatrix} 23 & 13 \\ 1 & 1 \end{vmatrix} + (\sin x + \cos x + 1) \begin{vmatrix} 23 & 17 \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 17 & 13 \\ 1 & 1 \end{vmatrix} = 17 \cdot 1 - 13 \cdot 1 = 4 \) 2. \( \begin{vmatrix} 23 & 13 \\ 1 & 1 \end{vmatrix} = 23 \cdot 1 - 13 \cdot 1 = 10 \) 3. \( \begin{vmatrix} 23 & 17 \\ 1 & 1 \end{vmatrix} = 23 \cdot 1 - 17 \cdot 1 = 6 \) Substituting these values back into the determinant: \[ y(x) = \sin x \cdot 4 - \cos x \cdot 10 + (\sin x + \cos x + 1) \cdot 6 \] Expanding this: \[ y(x) = 4\sin x - 10\cos x + 6\sin x + 6\cos x + 6 \] Combining like terms: \[ y(x) = (4\sin x + 6\sin x) + (-10\cos x + 6\cos x) + 6 = 10\sin x - 4\cos x + 6 \] ### Step 2: Find the First Derivative \( \frac{dy}{dx} \) Now we differentiate \( y(x) \): \[ \frac{dy}{dx} = 10\cos x + 4\sin x \] ### Step 3: Find the Second Derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = -10\sin x + 4\cos x \] ### Step 4: Calculate \( \frac{d^2y}{dx^2} + y \) Now we add \( y(x) \) and \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} + y = (-10\sin x + 4\cos x) + (10\sin x - 4\cos x + 6) \] Combining terms: \[ \frac{d^2y}{dx^2} + y = (-10\sin x + 10\sin x) + (4\cos x - 4\cos x) + 6 = 6 \] ### Final Result Thus, we find that: \[ \frac{d^2y}{dx^2} + y = 6 \]

To solve the problem, we need to find the expression for \( \frac{d^2y}{dx^2} + y \) where \( y(x) \) is given as the determinant: \[ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y= |[sinx,cosx,sinx],[cosx,-sinx,cosx],[x,1,1]| , find (dy)/(dx)

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

int(x-sinx)/(1-cosx)dx

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. y(x)=|(sinx,cosx,sinx+cosx+1),(23,17,13),(1,1,1)|,x in RR, then (d^2y)...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |