Home
Class 12
MATHS
The second order derivative of a sin^3 t...

The second order derivative of `a sin^3 t ` w.r.t, `a cos^3 t` at `t = pi/4` is

A

`(4sqrt(2))/(3a)`

B

2

C

`(1)/(12a)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the second order derivative of \( y = a \sin^3 t \) with respect to \( x = a \cos^3 t \) at \( t = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Define the functions Let: \[ y = a \sin^3 t \] \[ x = a \cos^3 t \] ### Step 2: Differentiate \( y \) with respect to \( t \) Using the chain rule: \[ \frac{dy}{dt} = 3a \sin^2 t \cos t \] ### Step 3: Differentiate \( x \) with respect to \( t \) Similarly, we differentiate \( x \): \[ \frac{dx}{dt} = 3a \cos^2 t (-\sin t) = -3a \cos^2 t \sin t \] ### Step 4: Find \( \frac{dy}{dx} \) Using the formula \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \): \[ \frac{dy}{dx} = \frac{3a \sin^2 t \cos t}{-3a \cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\tan t \] ### Step 5: Differentiate \( \frac{dy}{dx} \) with respect to \( t \) Now we differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d}{dt} \left( -\tan t \right) = -\sec^2 t \] ### Step 6: Use the chain rule to find \( \frac{d^2y}{dx^2} \) Using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dt} \left( -\tan t \right) \cdot \frac{1}{\frac{dx}{dt}} = -\sec^2 t \cdot \frac{1}{-3a \cos^2 t \sin t} = \frac{\sec^2 t}{3a \cos^2 t \sin t} \] ### Step 7: Evaluate at \( t = \frac{\pi}{4} \) At \( t = \frac{\pi}{4} \): \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \] \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Substituting these values: \[ \frac{d^2y}{dx^2} = \frac{2}{3a \left(\frac{1}{\sqrt{2}}\right)^2 \left(\frac{1}{\sqrt{2}}\right)} = \frac{2}{3a \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{2}}} = \frac{4\sqrt{2}}{3a} \] ### Final Answer: Thus, the second order derivative of \( a \sin^3 t \) with respect to \( a \cos^3 t \) at \( t = \frac{\pi}{4} \) is: \[ \frac{4\sqrt{2}}{3a} \] ---

To find the second order derivative of \( y = a \sin^3 t \) with respect to \( x = a \cos^3 t \) at \( t = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Define the functions Let: \[ y = a \sin^3 t \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of sin x^(@) w.r.t. x

Write the derivative of sinx w.r.t. cosxdot

Find the derivative of x^x-2^(sinx) w.r.t. x

The derivative of tan^(-1)x w.r.t cot^(-1) x is

Find derivative of x^3logx w.r.t. to x

Derivative of x^(2) w.r.t. x^(3) is

The derivative of f(x)= 3x^2 +2x + 4 w.r.t. x is

Derivative of x^(2) w.r.t. x^(3) is "……."

The derivative of function f(x) = log_e(2x) w.r.t. t is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. The second order derivative of a sin^3 t w.r.t, a cos^3 t at t = pi/4...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |