Home
Class 12
MATHS
Suppose f and g are functions having sec...

Suppose f and g are functions having second derivatives `f' and g'` every where, if `f(x).g(x)=1` for all `x and f'', g''` are never zero then `(f''(x))/(f'(x))-(g''(x))/(g'(x))` equals

A

`3((f'')/(g)-(g'')/(f))`

B

`3((f'')/(f)-(g'')/(g))`

C

`3((g'')/(g)-(f'')/(g))`

D

`3((f'')/(g)-(g'')/(f))`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`f(x)g(x)=1`
Differentiating with repect to s, we get
`f'g+f'g=0" "…(i)`
Ditterentiating (i) w.r.t. x, we get
`f''g+2f'g'+fg''=0" "...(ii)`
Differentiating (ii) w.r.t. x, we get
`implies" "f'''g+g'''f+3f''g'+3g''f'=0`
`(f''')/(f')(f'g)+(g''')/(g')(fg')+(3f'')/(f)(fg')+(3g'')/(g)(gf')=0`
`implies" "((f''')/(f')+(3g'')/(g))(f'g)=-((g''')/(g')+(3f'')/(f))(fg')`
`implies" "-((f''')/(f')+(3g'')/(g))(fg')=-((g''')/(g')+(3f'')/(f))fg'" "["Using (1)"]`
`implies" "(f''')/(f')+(3g'')/(g)=(g''')/(g')+(3f'')/(f)`
`implies" "(f''')/(f')=(g''')/(g')=3((f'')/(f)-(g'')/(g))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|92 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

Let f(x)a n dg(x) be two function having finite nonzero third-order derivatives f'''(x) and g'''(x) for all x in R . If f(x).g(x)=1 for all x in R , then prove that (f''')/(f') - (g''')/(g') = 3((f'')/f - (g'')/g) .

If f and g are two functions having derivative of order three for all x satisfying f(x)g(x)=C (constant) and (f''')/(f')-"A" (f'')/f -(g''')/(g')+(3g")/g=0 . Then A is equal to

Let f(x) and g(x) be real valued functions such that f(x)g(x)=1, AA x in R."If "f''(x) and g''(x)" exists"AA x in R and f'(x) and g'(x) are never zero, then prove that (f''(x))/(f'(x))-(g''(x))/(g'(x))=(2f'(x))/(f(x))

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If f(x) =x^(2)andg(x)=2x+1 are two real valued function, then evaluate : (f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)

If f:R->R and g:R->R is given by f(x) =|x| and g(x)=[x] for each x in R then {x in R:g(f(x))le f(g(x))}

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Suppose f and g are two functions such that f,g: R -> R f(x)=ln(1+sqrt(1+x^2)) and g(x)=ln(x+sqrt(1+x^2)) then find the value of xe^(g(x))f(1/x)+g'(x) at x=1

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Chapter Test
  1. Suppose f and g are functions having second derivatives f' and g' ever...

    Text Solution

    |

  2. If f(x)=log(e)[log(e)x], then what is f' (e) equal to?

    Text Solution

    |

  3. If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

    Text Solution

    |

  4. If sqrt(x+y) +sqrt(y-x)=5, then (d^(2)y)/(dx ^(2))=

    Text Solution

    |

  5. "If "ax^(2)+2hxy+by^(2)=1," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  6. If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest in...

    Text Solution

    |

  7. f(x) is a polynomial of degree

    Text Solution

    |

  8. If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

    Text Solution

    |

  9. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  10. "If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

    Text Solution

    |

  11. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  12. If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'( e )

    Text Solution

    |

  14. y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)]

    Text Solution

    |

  15. Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^...

    Text Solution

    |

  16. If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4)...

    Text Solution

    |

  17. If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

    Text Solution

    |

  18. Let a function f:RtoR satisfy the equation f(x+y)=f(x)=f(Y)AAx, yepsil...

    Text Solution

    |

  19. If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2...

    Text Solution

    |

  20. If f'(x)=arc tan((x^(x)-x^(-x))/(2)), then f'(1) is equal to

    Text Solution

    |

  21. Let f(x)=2^(2x-1)" and "g(x)=-2^(x)+2xlog2. Then the set of points sat...

    Text Solution

    |