Home
Class 12
MATHS
Let f be a twice differentiable function...

Let f be a twice differentiable function such that
`f''(x)=-f(x)" and "f'(x)=g(x)."If "h'(x)=[f(x)]^(2)+[g(x)]^(2),`
`h(1)=8" and "h(0)=2," then "h(2)=`

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Understand the given information We know that: - \( f''(x) = -f(x) \) - \( f'(x) = g(x) \) - \( h'(x) = [f(x)]^2 + [g(x)]^2 \) - \( h(1) = 8 \) - \( h(0) = 2 \) ### Step 2: Differentiate \( h'(x) \) We start by differentiating \( h'(x) \): \[ h'(x) = [f(x)]^2 + [g(x)]^2 \] Using the product rule, we differentiate: \[ h''(x) = 2f(x)f'(x) + 2g(x)g'(x) \] Substituting \( f'(x) = g(x) \): \[ h''(x) = 2f(x)g(x) + 2g(x)g'(x) \] ### Step 3: Find \( g'(x) \) From \( f''(x) = -f(x) \) and knowing that \( f'(x) = g(x) \), we differentiate \( g(x) \): \[ g'(x) = f''(x) = -f(x) \] Substituting this into our expression for \( h''(x) \): \[ h''(x) = 2f(x)g(x) + 2g(x)(-f(x)) = 2f(x)g(x) - 2f(x)g(x) = 0 \] Thus, we find: \[ h''(x) = 0 \] ### Step 4: Integrate \( h''(x) \) Since \( h''(x) = 0 \), we can integrate to find \( h'(x) \): \[ h'(x) = C \] where \( C \) is a constant. ### Step 5: Integrate \( h'(x) \) Integrating again gives: \[ h(x) = Cx + C_1 \] where \( C_1 \) is another constant. ### Step 6: Use the initial conditions to find constants Using \( h(0) = 2 \): \[ h(0) = C(0) + C_1 = C_1 = 2 \] Now using \( h(1) = 8 \): \[ h(1) = C(1) + C_1 = C + 2 = 8 \] This simplifies to: \[ C = 8 - 2 = 6 \] ### Step 7: Write the final expression for \( h(x) \) Now we have: \[ h(x) = 6x + 2 \] ### Step 8: Calculate \( h(2) \) To find \( h(2) \): \[ h(2) = 6(2) + 2 = 12 + 2 = 14 \] ### Final Answer Thus, the value of \( h(2) \) is: \[ \boxed{14} \]

To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Understand the given information We know that: - \( f''(x) = -f(x) \) - \( f'(x) = g(x) \) - \( h'(x) = [f(x)]^2 + [g(x)]^2 \) - \( h(1) = 8 \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

STATEMENT - 1 : Let f be a twice differentiable function such that f'(x) = g(x) and f''(x) = - f (x) . If h'(x) = [f(x)]^(2) + [g (x)]^(2) , h(1) = 8 and h (0) =2 Rightarrow h(2) =14 and STATEMENT - 2 : h''(x)=0

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

If f is twice differentiable such that f''(x)=-f(x), f'(x)=g(x), h'(x)=[f(x)]^(2)+[g(x)]^(2) and h(0)=2, h(1)=4, then the equation y=h(x) represents.

If f(x) is a twice differentiable function such that f'' (x) =-f(x),f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

If f is twice differentiable such that f"(x)=-f(x) f'(x)=g(x),h'(x)=[f(x)]^(2)+[g(x)]^(2)andh(0)=2, h(1)=4, then the equation y=h(x) represents.

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

Let f be the continuous and differentiable function such that f(x)=f(2-x), forall x in R and g(x)=f(1+x), then

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

If f (x) is a function such that f (x) + f''(x) =0 and g (x)= (f (x))^(2) +(f' (x))^(2) and g (3) =8, then g (8)=

Let f be a twice differentiable function such that f''(x)gt 0 AA x in R . Let h(x) is defined by h(x)=f(sin^(2)x)+f(cos^(2)x) where |x|lt (pi)/(2) . The number of critical points of h(x) are

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=sqrt(x^2+9) , write the value of (lim)(x->4)(f(x)-f(4))/(x-4) ...

    Text Solution

    |

  2. Let f be a twice differentiable function such that f''(x)=-f(x)" and...

    Text Solution

    |

  3. If f(x) = log |x| then for x ne 0 f(x) is equal to

    Text Solution

    |

  4. If f(x)=|logx|, then for xne1,f'(x) equals

    Text Solution

    |

  5. If f(9)=9" and f'"(9)=4 then Lt(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is e...

    Text Solution

    |

  6. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  7. If f(x) is given by, f(x)=(cosx+isinx) (cos3x+isin3x)......(cos(2n-1)x...

    Text Solution

    |

  8. If y=(log(cosx)sinx)(log(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)), then...

    Text Solution

    |

  9. Let f(x) be a polynomial. Then, the second order derivative of f(e^...

    Text Solution

    |

  10. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  11. Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x. If F(x)=("hog of ")(x)," t...

    Text Solution

    |

  12. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  13. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)), then f'(1) equals

    Text Solution

    |

  14. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  15. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  16. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  17. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  18. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  19. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  20. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |