Home
Class 12
MATHS
If y=(log(cosx)sinx)(log(sinx)cosx)+"sin...

If `y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2))`,
then `(dy)/(dx)` at `x=(pi)/(2)` is equal to

A

`(8)/(pi^(2)+4)`

B

0

C

`(-8)/(pi+4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left( \log_{\cos x} \sin x \right) \left( \log_{\sin x} \cos x \right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will follow these steps: ### Step 1: Rewrite the logarithmic terms using the change of base formula. Using the change of base formula for logarithms, we have: \[ \log_{\cos x} \sin x = \frac{\log \sin x}{\log \cos x} \quad \text{and} \quad \log_{\sin x} \cos x = \frac{\log \cos x}{\log \sin x}. \] Thus, we can rewrite \(y\) as: \[ y = \left( \frac{\log \sin x}{\log \cos x} \right) \left( \frac{\log \cos x}{\log \sin x} \right) + \frac{\sin^{-1}(2x)}{1 + x^2}. \] ### Step 2: Simplify the logarithmic product. The product of the logarithmic terms simplifies to: \[ y = 1 + \frac{\sin^{-1}(2x)}{1 + x^2}. \] ### Step 3: Differentiate \(y\) with respect to \(x\). Now, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx} \left( 1 + \frac{\sin^{-1}(2x)}{1 + x^2} \right). \] Using the quotient rule for the second term: \[ \frac{d}{dx} \left( \frac{\sin^{-1}(2x)}{1 + x^2} \right) = \frac{(1 + x^2) \cdot \frac{d}{dx}(\sin^{-1}(2x)) - \sin^{-1}(2x) \cdot \frac{d}{dx}(1 + x^2)}{(1 + x^2)^2}. \] ### Step 4: Calculate the derivatives. We know: \[ \frac{d}{dx}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}, \] where \(u = 2x\). Thus, \[ \frac{d}{dx}(\sin^{-1}(2x)) = \frac{1}{\sqrt{1 - (2x)^2}} \cdot 2 = \frac{2}{\sqrt{1 - 4x^2}}. \] Also, \[ \frac{d}{dx}(1 + x^2) = 2x. \] ### Step 5: Substitute and simplify. Substituting these into our derivative gives: \[ \frac{dy}{dx} = \frac{(1 + x^2) \cdot \frac{2}{\sqrt{1 - 4x^2}} - \sin^{-1}(2x) \cdot 2x}{(1 + x^2)^2}. \] ### Step 6: Evaluate at \(x = \frac{\pi}{2}\). Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\): 1. Calculate \(1 + \left(\frac{\pi}{2}\right)^2\). 2. Calculate \(\sin^{-1}(2 \cdot \frac{\pi}{2}) = \sin^{-1}(\pi)\), which is not defined, but we consider the limit as \(x\) approaches \(\frac{\pi}{2}\). 3. The term \(\sqrt{1 - 4\left(\frac{\pi}{2}\right)^2}\) also becomes complex. However, since we are interested in the behavior around \(x = \frac{\pi}{2}\) and we know that \(x = \frac{\pi}{2}\) is greater than 1, we can use the earlier derived formula for \(x > 1\): \[ \frac{dy}{dx} = -\frac{2}{1 + x^2}. \] Substituting \(x = \frac{\pi}{2}\): \[ \frac{dy}{dx} = -\frac{2}{1 + \left(\frac{\pi}{2}\right)^2} = -\frac{2}{1 + \frac{\pi^2}{4}} = -\frac{8}{\pi^2 + 4}. \] ### Final Answer: Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) is \[ -\frac{8}{\pi^2 + 4}. \]

To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \[ y = \left( \log_{\cos x} \sin x \right) \left( \log_{\sin x} \cos x \right) + \frac{\sin^{-1}(2x)}{1 + x^2}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={log_(cosx)sinx}"{"log_(sinx)cosx")"^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4dot

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is

3^((1/2+log_3(cosx+sinx)))-2^(log_2(cosx-sinx))=sqrt(2)

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=|log(e)|x||," then "f'(x) equals

    Text Solution

    |

  2. If f(x) is given by, f(x)=(cosx+isinx) (cos3x+isin3x)......(cos(2n-1)x...

    Text Solution

    |

  3. If y=(log(cosx)sinx)(log(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)), then...

    Text Solution

    |

  4. Let f(x) be a polynomial. Then, the second order derivative of f(e^...

    Text Solution

    |

  5. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  6. Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x. If F(x)=("hog of ")(x)," t...

    Text Solution

    |

  7. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  8. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)), then f'(1) equals

    Text Solution

    |

  9. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  10. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  11. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  12. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  13. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  14. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  15. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  16. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  17. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  18. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  19. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  20. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |