Home
Class 12
MATHS
Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x...

Let`f(x)=sinx,g(x)=x^(2)` and `h(x)=log_(e)x.`
If `F(x)=("hog of ")(x)," then "F''(x)` is equal to

A

`2cosec^(3)x`

B

`2cotx^(2)-4x^(2)cosec^(2)x^(2)`

C

`2xcotx^(2)`

D

`-2cosec^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative \( F''(x) \) of the function \( F(x) = h(g(f(x))) \), where \( f(x) = \sin x \), \( g(x) = x^2 \), and \( h(x) = \log_e x \), we will follow these steps: ### Step 1: Define the Composition of Functions We start by substituting the functions into \( F(x) \): \[ F(x) = h(g(f(x))) = h(g(\sin x)) = h(\sin^2 x) \] Since \( g(x) = x^2 \), we have: \[ g(\sin x) = (\sin x)^2 = \sin^2 x \] Now substituting into \( h(x) \): \[ F(x) = h(\sin^2 x) = \log_e(\sin^2 x) \] ### Step 2: Simplify the Function Using the logarithmic identity \( \log_e(a^b) = b \log_e(a) \), we can simplify \( F(x) \): \[ F(x) = \log_e(\sin^2 x) = 2 \log_e(\sin x) \] ### Step 3: Find the First Derivative \( F'(x) \) Now we differentiate \( F(x) \): \[ F'(x) = 2 \cdot \frac{d}{dx}(\log_e(\sin x)) \] Using the chain rule, we have: \[ \frac{d}{dx}(\log_e(\sin x)) = \frac{1}{\sin x} \cdot \cos x = \cot x \] Thus, \[ F'(x) = 2 \cdot \cot x \] ### Step 4: Find the Second Derivative \( F''(x) \) Next, we differentiate \( F'(x) \): \[ F''(x) = \frac{d}{dx}(2 \cot x) \] The derivative of \( \cot x \) is \( -\csc^2 x \), therefore: \[ F''(x) = 2 \cdot (-\csc^2 x) = -2 \csc^2 x \] ### Final Result Thus, the second derivative \( F''(x) \) is: \[ F''(x) = -2 \csc^2 x \] ---

To find the second derivative \( F''(x) \) of the function \( F(x) = h(g(f(x))) \), where \( f(x) = \sin x \), \( g(x) = x^2 \), and \( h(x) = \log_e x \), we will follow these steps: ### Step 1: Define the Composition of Functions We start by substituting the functions into \( F(x) \): \[ F(x) = h(g(f(x))) = h(g(\sin x)) = h(\sin^2 x) \] Since \( g(x) = x^2 \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then "phi''((pi)/(4)) is equal to

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x)=log|2x|,xne0 then f'(x) is equal to

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

f(x)=log_(x^(2)) 25 and g(x)=log_(x)5. Then f(x)=g(x) holds for x belonging to

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=sinx+e^x , then f''(x)

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x) be a polynomial. Then, the second order derivative of f(e^...

    Text Solution

    |

  2. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  3. Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x. If F(x)=("hog of ")(x)," t...

    Text Solution

    |

  4. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  5. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)), then f'(1) equals

    Text Solution

    |

  6. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  7. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  8. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  9. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  10. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  11. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  12. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  13. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  14. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  15. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  16. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  17. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  18. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  19. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  20. If x^2+y^2=1then

    Text Solution

    |