Home
Class 12
MATHS
If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2lt...

If `f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3` and [x] denotes the greatest integer less than or equal to x, then `f'"("sqrt(pi//3)")"` is equal to

A

`sqrt(pi//3)`

B

`-sqrt(pi//3)`

C

`-sqrt(pi)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f''\left(\sqrt{\frac{\pi}{3}}\right) \) for the function defined as: \[ f(x) = \sin\left(\frac{\pi}{3}[x] - x^2\right) \] where \([x]\) denotes the greatest integer less than or equal to \(x\), and \(2 < x < 3\). ### Step 1: Determine the value of \([x]\) In the interval \(2 < x < 3\), the greatest integer function \([x]\) takes the value \(2\). Therefore, we can simplify the function: \[ f(x) = \sin\left(\frac{\pi}{3} \cdot 2 - x^2\right) = \sin\left(\frac{2\pi}{3} - x^2\right) \] ### Step 2: Differentiate \(f(x)\) Next, we differentiate \(f(x)\) with respect to \(x\): \[ f'(x) = \frac{d}{dx} \left(\sin\left(\frac{2\pi}{3} - x^2\right)\right) \] Using the chain rule, we have: \[ f'(x) = \cos\left(\frac{2\pi}{3} - x^2\right) \cdot \frac{d}{dx}\left(\frac{2\pi}{3} - x^2\right) = \cos\left(\frac{2\pi}{3} - x^2\right) \cdot (-2x) \] Thus, we can write: \[ f'(x) = -2x \cos\left(\frac{2\pi}{3} - x^2\right) \] ### Step 3: Evaluate \(f'\left(\sqrt{\frac{\pi}{3}}\right)\) Now, we need to evaluate \(f'\) at \(x = \sqrt{\frac{\pi}{3}}\): \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{2\pi}{3} - \left(\sqrt{\frac{\pi}{3}}\right)^2\right) \] Calculating \(\left(\sqrt{\frac{\pi}{3}}\right)^2\): \[ \left(\sqrt{\frac{\pi}{3}}\right)^2 = \frac{\pi}{3} \] Substituting this back into the cosine function: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{2\pi}{3} - \frac{\pi}{3}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cos\left(\frac{\pi}{3}\right) \] ### Step 4: Calculate \(\cos\left(\frac{\pi}{3}\right)\) We know that: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting this value: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -2\left(\sqrt{\frac{\pi}{3}}\right) \cdot \frac{1}{2} \] This simplifies to: \[ f'\left(\sqrt{\frac{\pi}{3}}\right) = -\sqrt{\frac{\pi}{3}} \] ### Final Answer Thus, the value of \( f'\left(\sqrt{\frac{\pi}{3}}\right) \) is: \[ -\sqrt{\frac{\pi}{3}} \]

To solve the problem, we need to find the value of \( f''\left(\sqrt{\frac{\pi}{3}}\right) \) for the function defined as: \[ f(x) = \sin\left(\frac{\pi}{3}[x] - x^2\right) \] where \([x]\) denotes the greatest integer less than or equal to \(x\), and \(2 < x < 3\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2 , and [x] denotes the greatest integer less than or equal to x, then the value of f'(root(3)((pi)/(2))) , is

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest integer function, then f'(5sqrt((pi)/(2))) is equal to

If [x] denotes the greatest integer less than or equal to x and n in N , then f(X)= nx+n-[nx+n]+tan""(pix)/(2) , is

Let |x| be the greatest integer less than or equal to x, Then f(x)= x cos (pi (x+[x]) is continous at

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  2. Letf(x)=sinx,g(x)=x^(2) and h(x)=log(e)x. If F(x)=("hog of ")(x)," t...

    Text Solution

    |

  3. If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the grea...

    Text Solution

    |

  4. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)), then f'(1) equals

    Text Solution

    |

  5. The function u=e^x sin x ; v=e^x cos x satisfy the equation a.v(d u...

    Text Solution

    |

  6. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  7. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  8. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  9. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  10. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  11. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  12. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  13. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  14. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  15. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  16. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  17. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  18. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  19. If x^2+y^2=1then

    Text Solution

    |

  20. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |