Home
Class 12
MATHS
If f(x)=logx(lnx) then f'(x) at x=e is...

If `f(x)=log_x(lnx)` then `f'(x)` at x=e is

A

e

B

`-e`

C

`e^(2)`

D

`e^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) at \( x = e \) for the function \( f(x) = \log_x(\ln x) \), we will follow these steps: ### Step 1: Rewrite the function using the change of base formula The logarithm can be rewritten using the change of base formula: \[ f(x) = \log_x(\ln x) = \frac{\ln(\ln x)}{\ln(x)} \] ### Step 2: Differentiate using the quotient rule To differentiate \( f(x) \), we will use the quotient rule. If \( u = \ln(\ln x) \) and \( v = \ln(x) \), then: \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] where \( u' \) and \( v' \) are the derivatives of \( u \) and \( v \). ### Step 3: Compute \( u' \) and \( v' \) 1. Differentiate \( u = \ln(\ln x) \): \[ u' = \frac{1}{\ln x} \cdot \frac{1}{x} = \frac{1}{x \ln x} \] 2. Differentiate \( v = \ln(x) \): \[ v' = \frac{1}{x} \] ### Step 4: Substitute \( u, u', v, v' \) into the quotient rule formula Now substituting these into the quotient rule gives: \[ f'(x) = \frac{\ln(x) \cdot \frac{1}{x \ln x} - \ln(\ln x) \cdot \frac{1}{x}}{(\ln x)^2} \] This simplifies to: \[ f'(x) = \frac{1/x - \ln(\ln x)/x}{(\ln x)^2} = \frac{1 - \ln(\ln x)}{x (\ln x)^2} \] ### Step 5: Evaluate \( f'(x) \) at \( x = e \) Now we need to evaluate \( f'(e) \): 1. Calculate \( \ln(e) = 1 \) 2. Calculate \( \ln(\ln(e)) = \ln(1) = 0 \) Substituting these values into \( f'(x) \): \[ f'(e) = \frac{1 - 0}{e \cdot (1)^2} = \frac{1}{e} \] ### Final Answer Thus, the value of \( f'(x) \) at \( x = e \) is: \[ \boxed{\frac{1}{e}} \]

To find \( f'(x) \) at \( x = e \) for the function \( f(x) = \log_x(\ln x) \), we will follow these steps: ### Step 1: Rewrite the function using the change of base formula The logarithm can be rewritten using the change of base formula: \[ f(x) = \log_x(\ln x) = \frac{\ln(\ln x)}{\ln(x)} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x)=|log_(e) x|,then

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(a)(log_(a)x) , then f'(x), is

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x)=(log)_x(lnx),t h e nf^(prime)(x) at x=e is equal to 1/e (b) e (c) 1 (d) zero

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x)=log_(2)x , then f((2)/(x))+f(x)=

If f(x)=(log)_(x^2)(logx) , then f^(prime)(x) at x=e is (a) 0 (b) 1 (c) 1/e (d) 1/2e

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

    Text Solution

    |

  2. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  3. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  4. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  5. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  6. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  7. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  8. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  9. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  10. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  11. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  12. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  13. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  14. If x^2+y^2=1then

    Text Solution

    |

  15. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  16. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  17. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  18. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  19. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  20. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |