Home
Class 12
MATHS
Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(...

Let `f(t)="ln"(t)`. Then, `(d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")`

A

has value 0 when x=0

B

has value 0 when x = 1 and `x=4//9`

C

has value 9 `e^(2)-4e` when x=e`

D

has differential coefficient `27e-8` for x=e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the integral of the function \( f(t) = \ln(t) \) with respect to \( x \), where the limits of integration are \( x^2 \) and \( x^3 \). We will use the Leibniz rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the Function and Limits:** We have \( f(t) = \ln(t) \) and we need to differentiate: \[ \frac{d}{dx} \left( \int_{x^2}^{x^3} f(t) \, dt \right) \] 2. **Apply Leibniz's Rule:** According to Leibniz's rule, if \( F(x) = \int_{g(x)}^{h(x)} f(t) \, dt \), then: \[ \frac{dF}{dx} = f(h(x)) \cdot h'(x) - f(g(x)) \cdot g'(x) \] Here, \( g(x) = x^2 \) and \( h(x) = x^3 \). 3. **Calculate the Derivatives of the Limits:** - \( g'(x) = \frac{d}{dx}(x^2) = 2x \) - \( h'(x) = \frac{d}{dx}(x^3) = 3x^2 \) 4. **Evaluate \( f(h(x)) \) and \( f(g(x)) \):** - \( f(h(x)) = f(x^3) = \ln(x^3) = 3 \ln(x) \) - \( f(g(x)) = f(x^2) = \ln(x^2) = 2 \ln(x) \) 5. **Substitute into Leibniz's Rule:** Now substituting these values into the formula: \[ \frac{d}{dx} \left( \int_{x^2}^{x^3} f(t) \, dt \right) = f(x^3) \cdot h'(x) - f(x^2) \cdot g'(x) \] \[ = (3 \ln(x)) \cdot (3x^2) - (2 \ln(x)) \cdot (2x) \] \[ = 9x^2 \ln(x) - 4x \ln(x) \] 6. **Combine Like Terms:** Factor out \( \ln(x) \): \[ = (9x^2 - 4x) \ln(x) \] ### Final Answer: Thus, the derivative is: \[ \frac{d}{dx} \left( \int_{x^2}^{x^3} \ln(t) \, dt \right) = (9x^2 - 4x) \ln(x) \]

To solve the problem, we need to differentiate the integral of the function \( f(t) = \ln(t) \) with respect to \( x \), where the limits of integration are \( x^2 \) and \( x^3 \). We will use the Leibniz rule for differentiation under the integral sign. ### Step-by-Step Solution: 1. **Identify the Function and Limits:** We have \( f(t) = \ln(t) \) and we need to differentiate: \[ \frac{d}{dx} \left( \int_{x^2}^{x^3} f(t) \, dt \right) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) int_(x^(2))^(x^(3))cost^(2)dt has the derivative

Let g(t) = int_(x_(1))^(x^(2))f(t,x) dx . Then g'(t) = int_(x_(1))^(x^(2))(del)/(delt) (f(t,x))dx , Consider f(x) = int_(0)^(pi) (ln(1+xcostheta))/(costheta) d theta . The number of critical point of f(x) , in the interior of its domain, is

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f (x)= int _(x^(2))^(x ^(3))(dt)/(ln t) for x gt 1 and g (x) = int _(1) ^(x) (2t ^(2) -lnt ) f(t) dt(x gt 1), then: (a) g is increasing on (1,oo) (b) g is decreasing on (1,oo) (c) g is increasing on (1,2) and decreasing on (2,oo) (d) g is decreasing on (1,2) and increasing on (2,oo)

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) The points of maximum of the function f(x)=int_(0)^(x^(2))(t^(2)-5t+4)/(2+e^(t))dt

The value of lim_(x to oo)(d)/(dx)int_(sqrt(3))^(sqrt(x))(r^(3))/((r+1)(r-1))dr is :

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

    Text Solution

    |

  2. If f(x)=logx(lnx) then f'(x) at x=e is

    Text Solution

    |

  3. Let f(t)="ln"(t). Then, (d)/(dx)(int(x^(2))^(x^(3))f(t)" dt")

    Text Solution

    |

  4. If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)...

    Text Solution

    |

  5. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  6. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  7. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  8. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  9. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  10. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  11. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  12. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  13. If x^2+y^2=1then

    Text Solution

    |

  14. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  15. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  16. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  17. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  18. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  19. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  20. If g is the inverse function of and f'(x) = sin x then prove that g'(x...

    Text Solution

    |