Home
Class 12
MATHS
If f(x)=|cosx-sinx|, then f'(pi/2) is eq...

If `f(x)=|cosx-sinx|`, then `f'(pi/2)` is equal to

A

1

B

-1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'( \frac{\pi}{2} ) \) for the function \( f(x) = | \cos x - \sin x | \), we need to analyze the function and its derivative step by step. ### Step 1: Determine the expression for \( f(x) \) The function is defined as: \[ f(x) = | \cos x - \sin x | \] ### Step 2: Identify where \( \cos x - \sin x \) changes sign To find the points where the expression inside the absolute value changes sign, we set: \[ \cos x - \sin x = 0 \] This simplifies to: \[ \cos x = \sin x \] This occurs at: \[ x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 3: Analyze the intervals We will analyze the intervals around \( x = \frac{\pi}{4} \): - For \( 0 \leq x < \frac{\pi}{4} \), \( \cos x > \sin x \), so: \[ f(x) = \cos x - \sin x \] - For \( \frac{\pi}{4} < x < \frac{5\pi}{4} \), \( \sin x > \cos x \), so: \[ f(x) = \sin x - \cos x \] - For \( \frac{5\pi}{4} < x < 2\pi \), \( \cos x > \sin x \), so: \[ f(x) = \cos x - \sin x \] ### Step 4: Find the derivative \( f'(x) \) Now we differentiate \( f(x) \) in each interval: - For \( 0 \leq x < \frac{\pi}{4} \): \[ f'(x) = -\sin x - \cos x \] - For \( \frac{\pi}{4} < x < \frac{5\pi}{4} \): \[ f'(x) = \cos x + \sin x \] - For \( \frac{5\pi}{4} < x < 2\pi \): \[ f'(x) = -\sin x - \cos x \] ### Step 5: Evaluate \( f'(\frac{\pi}{2}) \) Since \( \frac{\pi}{2} \) is in the interval \( \left( \frac{\pi}{4}, \frac{5\pi}{4} \right) \), we use: \[ f'(x) = \cos x + \sin x \] Now substituting \( x = \frac{\pi}{2} \): \[ f'(\frac{\pi}{2}) = \cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right) = 0 + 1 = 1 \] ### Final Answer Thus, the value of \( f'(\frac{\pi}{2}) \) is: \[ \boxed{1} \]

To find \( f'( \frac{\pi}{2} ) \) for the function \( f(x) = | \cos x - \sin x | \), we need to analyze the function and its derivative step by step. ### Step 1: Determine the expression for \( f(x) \) The function is defined as: \[ f(x) = | \cos x - \sin x | \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

Range of the function f(x)=|sinx|cosx|+cosx|sinx|| is [a,b] then (a+b) is equal to

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. "If "y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n)))," then find "(dy)/(dx)a...

    Text Solution

    |

  2. Let f(x)=|cosx-sinx|, then f'((pi)/(4)) is equal to

    Text Solution

    |

  3. If f(x)=|cosx-sinx|, then f'(pi/2) is equal to

    Text Solution

    |

  4. If y=|x-x^(2)|, then (dy)/(dx)" at "x=1.

    Text Solution

    |

  5. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  6. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  7. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  8. If x^2+y^2=1then

    Text Solution

    |

  9. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  10. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  11. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  12. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  13. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  14. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  15. If g is the inverse function of and f'(x) = sin x then prove that g'(x...

    Text Solution

    |

  16. Let f(x) be a second degree polynomial function such that f(-1)=f(1) a...

    Text Solution

    |

  17. Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where ...

    Text Solution

    |

  18. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  19. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  20. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |