Home
Class 12
MATHS
If f(x) = |x|^ |tanx| then f'( -pi/6) ...

If `f(x) = |x|^ |tanx|` then `f'( -pi/6)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(-\frac{\pi}{6}) \) for the function \( f(x) = |x|^{|\tan x|} \), we will follow these steps: ### Step 1: Analyze the function at \( x = -\frac{\pi}{6} \) Since \( x = -\frac{\pi}{6} \) is negative, we can simplify \( f(x) \) as follows: \[ f(x) = (-x)^{|\tan x|} = (-x)^{-\tan(-x)} = (-x)^{\tan x} \] Thus, we have: \[ f(-\frac{\pi}{6}) = \left(-\left(-\frac{\pi}{6}\right)\right)^{|\tan(-\frac{\pi}{6})|} = \left(\frac{\pi}{6}\right)^{|\tan(-\frac{\pi}{6})|} \] Since \( \tan(-\frac{\pi}{6}) = -\frac{1}{\sqrt{3}} \), we have: \[ |\tan(-\frac{\pi}{6})| = \frac{1}{\sqrt{3}} \] So, \[ f(-\frac{\pi}{6}) = \left(\frac{\pi}{6}\right)^{\frac{1}{\sqrt{3}}} \] ### Step 2: Differentiate \( f(x) \) To differentiate \( f(x) \), we use the logarithmic differentiation: \[ \ln f(x) = |\tan x| \ln |x| \] Differentiating both sides with respect to \( x \): \[ \frac{f'(x)}{f(x)} = \frac{d}{dx} (|\tan x|) \ln |x| + |\tan x| \frac{d}{dx} (\ln |x|) \] Using the chain rule, we find: \[ \frac{d}{dx} (|\tan x|) = \text{sgn}(\tan x) \sec^2 x \] Thus: \[ \frac{f'(x)}{f(x)} = \text{sgn}(\tan x) \sec^2 x \ln |x| + |\tan x| \cdot \frac{1}{x} \] Now, multiplying both sides by \( f(x) \): \[ f'(x) = f(x) \left( \text{sgn}(\tan x) \sec^2 x \ln |x| + |\tan x| \cdot \frac{1}{x} \right) \] ### Step 3: Evaluate \( f'(-\frac{\pi}{6}) \) At \( x = -\frac{\pi}{6} \): - \( \tan(-\frac{\pi}{6}) = -\frac{1}{\sqrt{3}} \) so \( \text{sgn}(\tan(-\frac{\pi}{6})) = -1 \) - \( f(-\frac{\pi}{6}) = \left(\frac{\pi}{6}\right)^{\frac{1}{\sqrt{3}}} \) Now substituting into the derivative: \[ f'(-\frac{\pi}{6}) = \left(\frac{\pi}{6}\right)^{\frac{1}{\sqrt{3}}} \left( -\sec^2(-\frac{\pi}{6}) \ln \left(\frac{\pi}{6}\right) + \left(-\frac{1}{\sqrt{3}}\right) \cdot \frac{1}{-\frac{\pi}{6}} \right) \] Calculating \( \sec^2(-\frac{\pi}{6}) \): \[ \sec^2(-\frac{\pi}{6}) = \frac{1}{\cos^2(-\frac{\pi}{6})} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} = \frac{4}{3} \] Thus: \[ f'(-\frac{\pi}{6}) = \left(\frac{\pi}{6}\right)^{\frac{1}{\sqrt{3}}} \left( -\frac{4}{3} \ln \left(\frac{\pi}{6}\right) + \frac{6}{\pi \sqrt{3}} \right) \] ### Final Answer \[ f'(-\frac{\pi}{6}) = \left(\frac{\pi}{6}\right)^{\frac{1}{\sqrt{3}}} \left( -\frac{4}{3} \ln \left(\frac{\pi}{6}\right) + \frac{6}{\pi \sqrt{3}} \right) \]

To find \( f'(-\frac{\pi}{6}) \) for the function \( f(x) = |x|^{|\tan x|} \), we will follow these steps: ### Step 1: Analyze the function at \( x = -\frac{\pi}{6} \) Since \( x = -\frac{\pi}{6} \) is negative, we can simplify \( f(x) \) as follows: \[ f(x) = (-x)^{|\tan x|} = (-x)^{-\tan(-x)} = (-x)^{\tan x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x)= |cosxl, then f'((3pi)/4) equal to -

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0...

    Text Solution

    |

  2. If f(x)= |cosxl, then f'((3pi)/4) equal to -

    Text Solution

    |

  3. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  4. If x^2+y^2=1then

    Text Solution

    |

  5. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  6. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  7. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  8. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  9. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  10. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  11. If g is the inverse function of and f'(x) = sin x then prove that g'(x...

    Text Solution

    |

  12. Let f(x) be a second degree polynomial function such that f(-1)=f(1) a...

    Text Solution

    |

  13. Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where ...

    Text Solution

    |

  14. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  15. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  16. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  17. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  18. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  19. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  20. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |