Home
Class 12
MATHS
If y=cos^(-1)(cosx),t h e n(dy)/(dx) is ...

If `y=cos^(-1)(cosx),t h e n(dy)/(dx)` is equal to `x/y` (b) `y/(x^2)` `(x^2-y^2)/(x^2+y^2)` (d) `y/x`

A

1

B

-1

C

`(1)/(sqrt(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \cos^{-1}(\cos x) \) and find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( y = \cos^{-1}(\cos x) \) can be simplified based on the range of \( x \). - For \( x \) in the interval \( [0, \pi] \), \( y = x \). - For \( x \) in the interval \( [\pi, 2\pi] \), \( y = 2\pi - x \). 2. **Determine the Relevant Interval**: Since we are interested in \( x = \frac{\pi}{4} \), which lies in the interval \( [0, \pi] \), we can use the first case: \[ y = x \] 3. **Differentiate \( y \)**: Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(x) = 1 \] 4. **Evaluate at \( x = \frac{\pi}{4} \)**: Since \( \frac{dy}{dx} = 1 \) for all \( x \) in the interval \( [0, \pi] \), we can conclude that: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{4}} = 1 \] 5. **Final Result**: Thus, the value of \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) is: \[ \frac{dy}{dx} = 1 \] ### Conclusion: The correct answer is not explicitly listed in the options provided, but we have determined that \( \frac{dy}{dx} = 1 \).

To solve the problem, we need to differentiate the function \( y = \cos^{-1}(\cos x) \) and find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( y = \cos^{-1}(\cos x) \) can be simplified based on the range of \( x \). - For \( x \) in the interval \( [0, \pi] \), \( y = x \). - For \( x \) in the interval \( [\pi, 2\pi] \), \( y = 2\pi - x \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2-y^2)/(x^2+y^2) (d) y/x

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2-y^2)/(x^2+y^2) (d) y/x

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to (a) x/y (b) y/(x^2) (C) (x^2-y^2)/(x^2+y^2) (d) y/x

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga then (dy)/(dx) is equal to (a) (x^2-y^2)/(x^2+y^2) (b) y/x (c) x/y (d) none of these

If sin^(-1)((x^2-y^2)/(x^2+y^2))=logat h e n(dy)/(dx)i se q u a lto (x^2-y^2)/(x^2+y^2) (b) y/x (c) x/y (d) none of these

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y (b) 1+x y 1-x y (d) x y-2

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to x+y (b) 1+x y 1-x y (d) x y-2

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

    Text Solution

    |

  2. If x^2+y^2=1then

    Text Solution

    |

  3. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  4. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  5. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  6. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  7. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  8. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  9. If g is the inverse function of and f'(x) = sin x then prove that g'(x...

    Text Solution

    |

  10. Let f(x) be a second degree polynomial function such that f(-1)=f(1) a...

    Text Solution

    |

  11. Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where ...

    Text Solution

    |

  12. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  13. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  14. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  15. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  16. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  17. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  18. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  19. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  20. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |