Home
Class 12
MATHS
If y=sin^(-1)(sin x), then dy/dx at x =p...

If `y=sin^(-1)(sin x),` then `dy/dx` at `x =pi/2` is

A

1

B

-1

C

non-exisent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) for the function \( y = \sin^{-1}(\sin x) \), we will analyze the function based on the value of \( x \). ### Step 1: Determine the range of \( y \) The function \( y = \sin^{-1}(\sin x) \) behaves differently depending on the value of \( x \): - For \( x \) in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), \( y = x \). - For \( x \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), \( y = \pi - x \). - For \( x \) in the interval \( \left[\frac{3\pi}{2}, 2\pi\right] \), \( y = x - 2\pi \). ### Step 2: Evaluate \( y \) at \( x = \frac{\pi}{2} \) At \( x = \frac{\pi}{2} \): - Since \( \frac{\pi}{2} \) is in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), we use the second case: \[ y = \pi - x = \pi - \frac{\pi}{2} = \frac{\pi}{2} \] ### Step 3: Find \( \frac{dy}{dx} \) for each case 1. For \( x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \): \[ \frac{dy}{dx} = 1 \] 2. For \( x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \): \[ \frac{dy}{dx} = -1 \] ### Step 4: Analyze the derivative at \( x = \frac{\pi}{2} \) At \( x = \frac{\pi}{2} \), we have two different derivatives: - From the left (approaching \( \frac{\pi}{2} \) from the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)): \( \frac{dy}{dx} = 1 \) - From the right (approaching \( \frac{\pi}{2} \) from the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \)): \( \frac{dy}{dx} = -1 \) Since the left-hand derivative and the right-hand derivative at \( x = \frac{\pi}{2} \) are not equal, the derivative \( \frac{dy}{dx} \) does not exist at this point. ### Final Answer Thus, \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) does not exist. ---

To find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) for the function \( y = \sin^{-1}(\sin x) \), we will analyze the function based on the value of \( x \). ### Step 1: Determine the range of \( y \) The function \( y = \sin^{-1}(\sin x) \) behaves differently depending on the value of \( x \): - For \( x \) in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), \( y = x \). - For \( x \) in the interval \( \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \), \( y = \pi - x \). - For \( x \) in the interval \( \left[\frac{3\pi}{2}, 2\pi\right] \), \( y = x - 2\pi \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=cos ^(-1)sin x , then dy/dx

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

If y=sin^-1[(1-x)/(1+x)] , then dy/dx=

If y=x^(sin x), then find (dy)/(dx)

if y=sin^-1(1/x^3) ,then dy/dx=

If y= log (sin x) , then (dy)/(dx) is

If y=sin^2(x^3) , then dy/dx=

If y=sin^2(x^3) , then dy/dx=

If y=x^(sin^(-1)x) then finde (dy)/(dx) .

y=e^(sin x)/sinx then (dy)/(dx)=

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If x^2+y^2=1then

    Text Solution

    |

  2. If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2...

    Text Solution

    |

  3. If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

    Text Solution

    |

  4. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  5. Let f be a differentiable function satisfying [f(x)]^(n)=f(nx) for all...

    Text Solution

    |

  6. If f (x) =|x-1|and g (x) =f (f (f (x))), then g' (x) is equal to:

    Text Solution

    |

  7. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  8. If g is the inverse function of and f'(x) = sin x then prove that g'(x...

    Text Solution

    |

  9. Let f(x) be a second degree polynomial function such that f(-1)=f(1) a...

    Text Solution

    |

  10. Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where ...

    Text Solution

    |

  11. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  12. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  13. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  14. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  15. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  16. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  17. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  18. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  19. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  20. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |