Home
Class 12
MATHS
If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, ...

If `f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2`, and [x] denotes the greatest integer less than or equal to x, then the value of
`f'(root(3)((pi)/(2)))`, is

A

0

B

`3((pi)/(2))^(2//3)`

C

`-3((pi)/(2))^(2//3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the derivative of the function \( f(x) = \cos\left(\frac{\pi}{2} [x] - x^3\right) \) for \( 1 < x < 2 \) and evaluate it at \( x = \sqrt[3]{\frac{\pi}{2}} \). ### Step 1: Identify the function and the interval Given: \[ f(x) = \cos\left(\frac{\pi}{2} [x] - x^3\right) \] where \( [x] \) is the greatest integer less than or equal to \( x \). Since \( 1 < x < 2 \), we have \( [x] = 1 \). ### Step 2: Simplify the function Substituting \( [x] = 1 \) into the function: \[ f(x) = \cos\left(\frac{\pi}{2} \cdot 1 - x^3\right) = \cos\left(\frac{\pi}{2} - x^3\right) \] ### Step 3: Use the cosine identity Using the identity \( \cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta) \): \[ f(x) = \sin(x^3) \] ### Step 4: Differentiate the function Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \sin(x^3) = \cos(x^3) \cdot \frac{d}{dx}(x^3) = \cos(x^3) \cdot 3x^2 \] ### Step 5: Evaluate the derivative at \( x = \sqrt[3]{\frac{\pi}{2}} \) Now, we need to evaluate \( f'(\sqrt[3]{\frac{\pi}{2}}) \): \[ f'\left(\sqrt[3]{\frac{\pi}{2}}\right) = \cos\left(\left(\sqrt[3]{\frac{\pi}{2}}\right)^3\right) \cdot 3\left(\sqrt[3]{\frac{\pi}{2}}\right)^2 \] Since \( \left(\sqrt[3]{\frac{\pi}{2}}\right)^3 = \frac{\pi}{2} \): \[ f'\left(\sqrt[3]{\frac{\pi}{2}}\right) = \cos\left(\frac{\pi}{2}\right) \cdot 3\left(\sqrt[3]{\frac{\pi}{2}}\right)^2 \] ### Step 6: Calculate \( \cos\left(\frac{\pi}{2}\right) \) We know that: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Thus: \[ f'\left(\sqrt[3]{\frac{\pi}{2}}\right) = 0 \cdot 3\left(\sqrt[3]{\frac{\pi}{2}}\right)^2 = 0 \] ### Final Answer The value of \( f'\left(\sqrt[3]{\frac{\pi}{2}}\right) \) is \( 0 \). ---

To solve the problem step by step, we need to find the derivative of the function \( f(x) = \cos\left(\frac{\pi}{2} [x] - x^3\right) \) for \( 1 < x < 2 \) and evaluate it at \( x = \sqrt[3]{\frac{\pi}{2}} \). ### Step 1: Identify the function and the interval Given: \[ f(x) = \cos\left(\frac{\pi}{2} [x] - x^3\right) \] where \( [x] \) is the greatest integer less than or equal to \( x \). Since \( 1 < x < 2 \), we have \( [x] = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3 and [x] denotes the greatest integer less than or equal to x, then f'"("sqrt(pi//3)")" is equal to

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

If f(x)=cos[pi]^2x+cos[-pi^2]x ,\ w h e r e\ [x] denotes the greatest integer less than or equal to x , then write the value of f(pi)dot

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If [x] denotes the greatest integer less than or equal to x, then the solution set of inequation ([x]-2)/(4-[x]) > 0, is ...

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest integer function, then f'(5sqrt((pi)/(2))) is equal to

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  2. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  3. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  4. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  5. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  6. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  7. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  8. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  9. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  10. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  11. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  12. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  13. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  14. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  15. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  16. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  17. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  18. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  19. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  20. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |