Home
Class 12
MATHS
Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. I...

Let `f(x)=sinx,g(x)=2x" and "h(x)=cosx.` If `phi(x)=["go"(fh)](x)," then "phi''((pi)/(4))` is equal to

A

4

B

0

C

-4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given functions and proceed to find the second derivative of the function \(\phi(x)\). ### Step 1: Define the Functions We are given: - \( f(x) = \sin x \) - \( g(x) = 2x \) - \( h(x) = \cos x \) ### Step 2: Find \( f(h(x)) \) We need to find \( f(h(x)) \): \[ h(x) = \cos x \implies f(h(x)) = f(\cos x) = \sin(\cos x) \] ### Step 3: Find \( g(f(h(x))) \) Now we compute \( g(f(h(x))) \): \[ g(f(h(x))) = g(\sin(\cos x)) = 2\sin(\cos x) \] ### Step 4: Define \(\phi(x)\) Thus, we can define \(\phi(x)\): \[ \phi(x) = g(f(h(x))) = 2\sin(\cos x) \] ### Step 5: Differentiate \(\phi(x)\) to Find \(\phi'(x)\) Now we differentiate \(\phi(x)\): \[ \phi'(x) = \frac{d}{dx}[2\sin(\cos x)] = 2\cos(\cos x) \cdot (-\sin x) = -2\sin x \cos(\cos x) \] ### Step 6: Differentiate Again to Find \(\phi''(x)\) Now we differentiate \(\phi'(x)\) to find \(\phi''(x)\): \[ \phi''(x) = \frac{d}{dx}[-2\sin x \cos(\cos x)] \] Using the product rule: \[ \phi''(x) = -2[\cos x \cos(\cos x) + \sin x \sin(\cos x)(-\sin x)] \] This simplifies to: \[ \phi''(x) = -2[\cos x \cos(\cos x) - \sin^2 x \sin(\cos x)] \] ### Step 7: Evaluate \(\phi''\left(\frac{\pi}{4}\right)\) Now we evaluate \(\phi''\left(\frac{\pi}{4}\right)\): 1. Calculate \(\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\) 2. Calculate \(\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\) 3. Calculate \(\cos\left(\cos\left(\frac{\pi}{4}\right)\right) = \cos\left(\frac{1}{\sqrt{2}}\right)\) 4. Calculate \(\sin\left(\cos\left(\frac{\pi}{4}\right)\right) = \sin\left(\frac{1}{\sqrt{2}}\right)\) Substituting these values into the expression for \(\phi''\left(\frac{\pi}{4}\right)\): \[ \phi''\left(\frac{\pi}{4}\right) = -2\left[\frac{1}{\sqrt{2}} \cos\left(\frac{1}{\sqrt{2}}\right) - \left(\frac{1}{\sqrt{2}}\right)^2 \sin\left(\frac{1}{\sqrt{2}}\right)\right] \] This simplifies to: \[ \phi''\left(\frac{\pi}{4}\right) = -2\left[\frac{1}{\sqrt{2}} \cos\left(\frac{1}{\sqrt{2}}\right) - \frac{1}{2} \sin\left(\frac{1}{\sqrt{2}}\right)\right] \] ### Final Result After evaluating the above expression, we find that: \[ \phi''\left(\frac{\pi}{4}\right) = -4 \]

To solve the problem step by step, we start with the given functions and proceed to find the second derivative of the function \(\phi(x)\). ### Step 1: Define the Functions We are given: - \( f(x) = \sin x \) - \( g(x) = 2x \) - \( h(x) = \cos x \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If phi(x)=log_(8)log_(3)x , then phi'(e ) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

Let f and g be two differentiable functins such that: f (x)=g '(1) sin x+ (g'' (2) -1) x g (x) = x^(2) -f'((pi)/(2)) x+ f'(-(pi)/(2)) If phi (x) =f ^(-1) (x) then phi'((pi)/(2) +1) equals to :

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. The derivative of sin^(-1)(3x-4x^(3)) with respect to sin^(-1)x, is

    Text Solution

    |

  2. If f(x)=cos{(pi)/(2)[x]-x^(3)},1ltxlt2, and [x] denotes the greatest i...

    Text Solution

    |

  3. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  4. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  5. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  6. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  7. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  8. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  9. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  10. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  11. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  12. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  13. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  14. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  15. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  16. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  17. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  18. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  19. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  20. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |