Home
Class 12
MATHS
If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(n...

If `f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}|`, then the value of `(d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1` is

A

-1

B

0

C

1

D

independent of a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the \( n \)-th derivative of the function \( f(x) \) at \( x = 0 \), where \[ f(x) = \begin{vmatrix} x^n & \sin x & \cos x \\ n! & \sin(n\pi/2) & \cos(n\pi/2) \\ a & a^2 & a^3 \end{vmatrix} \] for \( n = 2m + 1 \). ### Step 1: Write the determinant The function \( f(x) \) can be expressed as a determinant of a 3x3 matrix. We will denote the rows of the determinant as \( R_1, R_2, R_3 \): \[ R_1 = (x^n, \sin x, \cos x), \quad R_2 = (n!, \sin(n\pi/2), \cos(n\pi/2)), \quad R_3 = (a, a^2, a^3) \] ### Step 2: Differentiate the determinant To find the \( n \)-th derivative of \( f(x) \), we will use the property of determinants. The derivative of a determinant can be computed by differentiating one row while keeping the others constant. Using the Leibniz rule for determinants: \[ \frac{d}{dx} \begin{vmatrix} R_1 \\ R_2 \\ R_3 \end{vmatrix} = \begin{vmatrix} \frac{dR_1}{dx} \\ R_2 \\ R_3 \end{vmatrix} + \begin{vmatrix} R_1 \\ \frac{dR_2}{dx} \\ R_3 \end{vmatrix} + \begin{vmatrix} R_1 \\ R_2 \\ \frac{dR_3}{dx} \end{vmatrix} \] However, since \( R_2 \) and \( R_3 \) are constants with respect to \( x \), their derivatives will be zero. Thus, we only need to differentiate \( R_1 \). ### Step 3: Compute the first derivative The first derivative of \( R_1 \) is: \[ \frac{dR_1}{dx} = \left(n x^{n-1}, \cos x, -\sin x\right) \] Thus, the first derivative of the determinant becomes: \[ f'(x) = \begin{vmatrix} n x^{n-1} & \cos x & -\sin x \\ n! & \sin(n\pi/2) & \cos(n\pi/2) \\ a & a^2 & a^3 \end{vmatrix} \] ### Step 4: Compute the \( n \)-th derivative at \( x = 0 \) We need to find the \( n \)-th derivative of \( f(x) \) at \( x = 0 \). Since \( n = 2m + 1 \) is odd, we can analyze the behavior of \( \sin(n\pi/2) \) and \( \cos(n\pi/2) \): - For odd \( n \), \( \sin(n\pi/2) = (-1)^m \) and \( \cos(n\pi/2) = 0 \). This means that the second row of the determinant simplifies to: \[ (n!, (-1)^m, 0) \] ### Step 5: Evaluate the determinant at \( x = 0 \) At \( x = 0 \): - \( R_1 = (0, 0, 1) \) - The determinant becomes: \[ f(0) = \begin{vmatrix} 0 & 0 & 1 \\ n! & (-1)^m & 0 \\ a & a^2 & a^3 \end{vmatrix} \] Calculating this determinant, we find that the first column is all zeros, which means the determinant evaluates to 0. ### Conclusion Thus, the value of \( \frac{d^n}{dx^n} f(x) \) at \( x = 0 \) for \( n = 2m + 1 \) is: \[ \boxed{0} \]

To solve the problem, we need to find the value of the \( n \)-th derivative of the function \( f(x) \) at \( x = 0 \), where \[ f(x) = \begin{vmatrix} x^n & \sin x & \cos x \\ n! & \sin(n\pi/2) & \cos(n\pi/2) \\ a & a^2 & a^3 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

Let "f(x)"=|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

if =|{:(x^(n),,n!,,2),(cos x,,cos.(npi)/(2),,4),(sin x,,sin .(npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) .(n in z).

If f(x)=|[x^n, n!, 2; cosx, cos((npi)/2), 4; sinx ,sin((npi)/2), 8]| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

If a_n=sin((npi)/6) then the value of sum a_n^2

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then ...

    Text Solution

    |

  2. Let f(x) be a polynomial function satisfying f(x)+f((1)/(x))=f(x)f((1...

    Text Solution

    |

  3. If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(...

    Text Solution

    |

  4. If y=f((2x-1)/(x^2+1))andf^'(x)=sinx^2, then find (dy)/(dx)

    Text Solution

    |

  5. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  6. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  7. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  8. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  9. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  10. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  11. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  12. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  13. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  14. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  15. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  16. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  17. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  18. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  19. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  20. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |