Home
Class 12
MATHS
If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos...

If `f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x` and `n gt 1,` then `f'(pi/2)` is

A

1

B

0

C

-1

D

(-1)^n-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( f(x) = \cos x \cos 2x \cos 2^2 x \cos 2^3 x \ldots \cos 2^{n-1} x \) and evaluate \( f'(\frac{\pi}{2}) \). ### Step 1: Rewrite the function We can express \( f(x) \) as: \[ f(x) = \prod_{k=0}^{n-1} \cos(2^k x) \] ### Step 2: Use the product rule To differentiate \( f(x) \), we will use the product rule. The derivative of a product of functions is given by: \[ (fg)' = f'g + fg' \] For \( f(x) \), we have: \[ f'(x) = \sum_{k=0}^{n-1} \left( \prod_{j=0, j \neq k}^{n-1} \cos(2^j x) \right) \cdot \frac{d}{dx}[\cos(2^k x)] \] ### Step 3: Differentiate \( \cos(2^k x) \) The derivative of \( \cos(2^k x) \) is: \[ \frac{d}{dx}[\cos(2^k x)] = -\sin(2^k x) \cdot 2^k \] Thus, substituting this into our derivative expression, we get: \[ f'(x) = \sum_{k=0}^{n-1} \left( \prod_{j=0, j \neq k}^{n-1} \cos(2^j x) \right) \cdot (-\sin(2^k x) \cdot 2^k) \] ### Step 4: Evaluate at \( x = \frac{\pi}{2} \) Now we need to evaluate \( f'(\frac{\pi}{2}) \). First, we observe that: \[ \cos(2^k \cdot \frac{\pi}{2}) = 0 \quad \text{for odd } k \] and \[ \cos(2^k \cdot \frac{\pi}{2}) = (-1)^{m} \quad \text{for even } k \text{ where } m = \frac{2^k}{2} \] ### Step 5: Simplifying \( f'(\frac{\pi}{2}) \) At \( x = \frac{\pi}{2} \): - For \( k = 0 \), \( \sin(2^0 \cdot \frac{\pi}{2}) = \sin(\frac{\pi}{2}) = 1 \) - For \( k = 1 \), \( \sin(2^1 \cdot \frac{\pi}{2}) = \sin(\pi) = 0 \) - For \( k = 2 \), \( \sin(2^2 \cdot \frac{\pi}{2}) = \sin(2\pi) = 0 \) - Continuing this, we find that all terms for \( k \geq 1 \) will contribute 0 due to the sine terms. Thus, we only need to consider the term when \( k = 0 \): \[ f'(\frac{\pi}{2}) = -\sin(\frac{\pi}{2}) \cdot 2^0 \cdot \prod_{j=1}^{n-1} \cos(2^j \cdot \frac{\pi}{2}) = -1 \cdot \prod_{j=1}^{n-1} 0 = 0 \] ### Final Result So, we conclude that: \[ f'(\frac{\pi}{2}) = 0 \]

To solve the problem, we need to differentiate the function \( f(x) = \cos x \cos 2x \cos 2^2 x \cos 2^3 x \ldots \cos 2^{n-1} x \) and evaluate \( f'(\frac{\pi}{2}) \). ### Step 1: Rewrite the function We can express \( f(x) \) as: \[ f(x) = \prod_{k=0}^{n-1} \cos(2^k x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x) = cos(x)cos(2x)cos(2^(2)x)…cos(2^(n-1)x) and n gt1 , then f'((pi)/(2)) is

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x)=(cosx+isinx)(cos2x+isin2x)(cos3x+isin3x)......(cosn x+isinn x) and f(1)=1 ,then f^('')(1) is equal to

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to:

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

If f(x) is given by f(x)=(cosx+i sinx)(cos3x+isin3x) ......... ....... [cos(2n-1)x+isin(2n-1)x] , then f''(x) is equal to

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f be a differentiable function defined for all x in R such that f(...

    Text Solution

    |

  2. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  3. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  4. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  5. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  6. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  7. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  8. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  9. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  10. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  11. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  12. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  13. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  14. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  15. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  16. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  17. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  18. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  19. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  20. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |