Home
Class 12
MATHS
f^(prime)(x)=varphi^(prime)(x)=f(x) for ...

`f^(prime)(x)=varphi^(prime)(x)=f(x)` for all `xdot` Also, `f(3)=5a n df^(prime)(3)=4.` Then the value of `[f(10)]^2` -`[ varphi(10)]^2` is _____

A

0

B

9

C

41

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. \( f'(x) = \varphi'(x) = f(x) \) for all \( x \). 2. \( f(3) = 5 \) and \( f'(3) = 4 \). We need to find the value of \( [f(10)]^2 - [\varphi(10)]^2 \). ### Step-by-Step Solution: **Step 1: Differentiate the expression \( f(x)^2 - \varphi(x)^2 \)** Using the chain rule, we differentiate \( f(x)^2 - \varphi(x)^2 \): \[ \frac{d}{dx}(f(x)^2 - \varphi(x)^2) = 2f(x)f'(x) - 2\varphi(x)\varphi'(x) \] **Step 2: Substitute the derivatives** Since \( f'(x) = f(x) \) and \( \varphi'(x) = f(x) \): \[ = 2f(x)f(x) - 2\varphi(x)f(x) = 2f(x)^2 - 2\varphi(x)f(x) \] **Step 3: Set the derivative to zero** For the expression to be constant, the derivative must equal zero: \[ 2f(x)^2 - 2\varphi(x)f(x) = 0 \] This implies: \[ f(x)^2 = \varphi(x)f(x) \] **Step 4: Rearranging the equation** We can rearrange this to: \[ f(x)^2 - \varphi(x)f(x) = 0 \] Factoring out \( f(x) \): \[ f(x)(f(x) - \varphi(x)) = 0 \] Since \( f(x) \) cannot be zero for all \( x \) (as it is given that \( f(3) = 5 \)), we have: \[ f(x) = \varphi(x) \] **Step 5: Conclusion about the constant** Since \( f(x) = \varphi(x) \), we can conclude that: \[ f(x)^2 - \varphi(x)^2 = 0 \] This means: \[ f(x)^2 - \varphi(x)^2 = C \] for some constant \( C \). **Step 6: Evaluate at specific points** Using the values given: At \( x = 3 \): \[ f(3) = 5 \quad \text{and} \quad \varphi(3) = f'(3) = 4 \] Thus: \[ f(3)^2 - \varphi(3)^2 = 5^2 - 4^2 = 25 - 16 = 9 \] Since \( f(x)^2 - \varphi(x)^2 \) is constant, it holds for \( x = 10 \) as well: \[ f(10)^2 - \varphi(10)^2 = 9 \] ### Final Answer: The value of \( [f(10)]^2 - [\varphi(10)]^2 \) is \( \boxed{9} \).

To solve the problem, we start with the given information: 1. \( f'(x) = \varphi'(x) = f(x) \) for all \( x \). 2. \( f(3) = 5 \) and \( f'(3) = 4 \). We need to find the value of \( [f(10)]^2 - [\varphi(10)]^2 \). ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(prime)(3)=4. Then the value of [f(10)]^2 − [ϕ(10)]^2is _____

f^(prime)(x)=phi(x) and phi^(prime)(x)=f(x) for all x. Also, f(3)=5 and f^(prime)(3)=4 . Then the value of [f(10)]^2-[phi(10)]^2 is _____

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x)for a l lx ,a n df(0)=3,a n dif f(3)=3, then the value of f(-3) is ______________

If function f satisfies the relation f(x)xf^(prime)(-x)=f(-x)xf^(prime)(x)fora l lx ,a n df(0)=3,a n diff(3)=3, then the value of f(-3) is ______________

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

If f(x)=m x+ca n df(0)=f^(prime)(0)=1. What is f(2)?

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

If f^(prime)(x)=asinx+bcosx and f^(prime)(0)=4,f(0)=3,f(pi/2)=5 . Find f(x).

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  2. If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n...

    Text Solution

    |

  3. f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(p...

    Text Solution

    |

  4. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  5. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  6. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  7. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  8. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  9. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  10. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  11. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  12. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  13. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  14. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  15. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  16. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  17. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  18. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  19. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  20. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |