Home
Class 12
MATHS
Differentiate sec^-1""(1)/(2x^2-1) with...

Differentiate `sec^-1""(1)/(2x^2-1)` with respect to `sqrt(1-x^2)`

A

-4

B

4

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \), we will use the chain rule and implicit differentiation. ### Step-by-step solution: 1. **Identify the function to differentiate**: We have \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \). 2. **Differentiate \( y \) with respect to \( x \)**: Using the derivative of the inverse secant function, we know: \[ \frac{dy}{dx} = \frac{1}{|x| \sqrt{x^2 - 1}} \cdot \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) \] To differentiate \( \frac{1}{2x^2 - 1} \), we use the quotient rule: \[ \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) = -\frac{(0)(2x^2 - 1) - (1)(4x)}{(2x^2 - 1)^2} = -\frac{-4x}{(2x^2 - 1)^2} = \frac{4x}{(2x^2 - 1)^2} \] Therefore, \[ \frac{dy}{dx} = \frac{1}{|x| \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \cdot \frac{4x}{(2x^2 - 1)^2} \] 3. **Differentiate \( z \) with respect to \( x \)**: We have \( z = \sqrt{1 - x^2} \). The derivative is: \[ \frac{dz}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{1 - x^2}} \] 4. **Use the chain rule to find \( \frac{dy}{dz} \)**: By the chain rule: \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{dy}{dx} \cdot \frac{1}{\frac{dz}{dx}} \] Thus, \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \left(-\frac{\sqrt{1 - x^2}}{x}\right) \] 5. **Substituting the expressions**: Substitute the expression for \( \frac{dy}{dx} \) into the equation: \[ \frac{dy}{dz} = \left(\frac{1}{|x| \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \cdot \frac{4x}{(2x^2 - 1)^2}\right) \cdot \left(-\frac{\sqrt{1 - x^2}}{x}\right) \] 6. **Simplify the expression**: After simplifying, we get: \[ \frac{dy}{dz} = -\frac{4\sqrt{1 - x^2}}{|x|(2x^2 - 1)^2 \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \] ### Final Result: Thus, the derivative of \( \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( \sqrt{1 - x^2} \) is: \[ \frac{dy}{dz} = -\frac{4\sqrt{1 - x^2}}{|x|(2x^2 - 1)^2 \sqrt{\left(\frac{1}{2x^2 - 1}\right)^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((1-x)/(1+x)) with respect to sqrt(1-x^2) , if -1 < x < 1 .

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate sqrt((1-x^2)/(1+x^2)) with respect to x .

Differentiate sin^(-1)(1/(sqrt(1+x^2))) with respect to x

Differentiate (2x+5)/(x^(2)-1) with respect to 'x'.

Differentiate tan^-1""((2x)/(1-x^2)) with respect to cos ^-1 ((1-x^2)/(1+x^2))

Differentiate sqrt(tan^(-1)(x/2)) with respect to x :

Differentiate tan^(-1)((1+a x)/(1-a x)) with respect to sqrt(1+a^2x^2)dot

Differentiate sin^(-1)(2a xsqrt(1-a^2x^2)) with respect to sqrt(1-a^2x^2) , if -1/(sqrt(2)) < ax<1/(sqrt(2)) .

Differentiate sin ^(-1) (1/sqrt(1+x^2)) with respect to 'x'

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  2. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  3. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  4. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  5. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  6. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  7. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  8. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  9. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  10. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  11. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  12. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  13. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  14. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  15. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  16. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  17. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  18. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  19. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  20. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |