Home
Class 12
MATHS
The derivative of sec^(-1)((1)/(2x^(2)-1...

The derivative of `sec^(-1)((1)/(2x^(2)-1))` with respect to `sqrt(1-x^(2))" at "x=1`, is

A

2

B

-2

C

non-exisent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( v = \sqrt{1 - x^2} \) at \( x = 1 \), we will follow these steps: ### Step 1: Define the Variables Let: - \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - \( v = \sqrt{1 - x^2} \) ### Step 2: Change of Variable We can express \( x \) in terms of \( \theta \) by letting \( x = \cos(\theta) \). Then, \( \theta = \cos^{-1}(x) \). ### Step 3: Substitute \( x \) Substituting \( x = \cos(\theta) \) into \( u \): \[ u = \sec^{-1}\left(\frac{1}{2\cos^2(\theta) - 1}\right) \] Using the identity \( 2\cos^2(\theta) - 1 = \cos(2\theta) \): \[ u = \sec^{-1}\left(\frac{1}{\cos(2\theta)}\right) = 2\theta \] Thus, we have: \[ u = 2\cos^{-1}(x) \] ### Step 4: Differentiate \( u \) with respect to \( x \) Now, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = 2 \cdot \frac{d}{dx}(\cos^{-1}(x)) = 2 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{2}{\sqrt{1 - x^2}} \] ### Step 5: Differentiate \( v \) with respect to \( x \) Next, we differentiate \( v \): \[ v = \sqrt{1 - x^2} \] Differentiating gives: \[ \frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{1 - x^2}} \] ### Step 6: Find \( \frac{du}{dv} \) Now, we can find \( \frac{du}{dv} \): \[ \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{-\frac{2}{\sqrt{1 - x^2}}}{-\frac{x}{\sqrt{1 - x^2}}} = \frac{2}{x} \] ### Step 7: Evaluate at \( x = 1 \) Finally, we evaluate \( \frac{du}{dv} \) at \( x = 1 \): \[ \frac{du}{dv} \bigg|_{x=1} = \frac{2}{1} = 2 \] ### Final Answer Thus, the derivative of \( \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( \sqrt{1 - x^2} \) at \( x = 1 \) is \( \boxed{2} \). ---

To find the derivative of \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( v = \sqrt{1 - x^2} \) at \( x = 1 \), we will follow these steps: ### Step 1: Define the Variables Let: - \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - \( v = \sqrt{1 - x^2} \) ### Step 2: Change of Variable ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

The derivative of sec^(-1)(1/(2x^2-1)) with respect to sqrt(1+3x) at x=-1/3 (a) does not exist (b) 0 (c) 1/2 (d) 1/3

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Find the derivative of sec^(-1)(1/(2x^2-1))wdotrdott sqrt(1-x^2) at x=1/2

Find the derivative of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) at x=1/2

The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1-x^(2))/(1+x^(2))) is

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is 1/8 (b) 1/4 (c) 1/2 (d) 1

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is ...

    Text Solution

    |

  2. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  3. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  4. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  5. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  6. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  7. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  8. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  9. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  10. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  11. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  12. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  13. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  14. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  15. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  16. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  17. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  18. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  19. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  20. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |