Home
Class 12
MATHS
The derivative of sec^(-1)((1)/(2x^(2)-1...

The derivative of `sec^(-1)((1)/(2x^(2)-1))` with respect to `sqrt(1-x^(2))" at "x=0`, is

A

2

B

-2

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \) at \( x = 0 \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] Using the identity \( \sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right) \), we can rewrite this as: \[ y = \cos^{-1}(2x^2 - 1) \] ### Step 2: Differentiate \( y \) with respect to \( x \) To find \( \frac{dy}{dx} \), we differentiate \( y \): \[ \frac{dy}{dx} = -\frac{d}{dx}\left(2x^2 - 1\right) \cdot \frac{1}{\sqrt{1 - (2x^2 - 1)^2}} \] Calculating the derivative of \( 2x^2 - 1 \): \[ \frac{d}{dx}(2x^2 - 1) = 4x \] Thus, we have: \[ \frac{dy}{dx} = -\frac{4x}{\sqrt{1 - (2x^2 - 1)^2}} \] ### Step 3: Simplify the expression Next, we simplify the expression under the square root: \[ (2x^2 - 1)^2 = 4x^4 - 4x^2 + 1 \] Thus, \[ 1 - (2x^2 - 1)^2 = 1 - (4x^4 - 4x^2 + 1) = 4x^2 - 4x^4 \] So we have: \[ \frac{dy}{dx} = -\frac{4x}{\sqrt{4x^2 - 4x^4}} = -\frac{4x}{2\sqrt{x^2(1 - x^2)}} = -\frac{2}{\sqrt{1 - x^2}} \quad \text{for } x \neq 0 \] ### Step 4: Find \( \frac{dz}{dx} \) Now, we differentiate \( z \): \[ z = \sqrt{1 - x^2} \] Thus, \[ \frac{dz}{dx} = -\frac{x}{\sqrt{1 - x^2}} \] ### Step 5: Use the chain rule to find \( \frac{dy}{dz} \) Using the chain rule: \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{dy}{dx} \cdot \frac{1}{\frac{dz}{dx}} \] Substituting the values we found: \[ \frac{dy}{dz} = \left(-\frac{2}{\sqrt{1 - x^2}}\right) \cdot \left(-\frac{\sqrt{1 - x^2}}{x}\right) = \frac{2}{x} \] ### Step 6: Evaluate at \( x = 0 \) As \( x \to 0 \), we need to evaluate the limit: \[ \frac{dy}{dz} = \lim_{x \to 0} \frac{2}{x} \] This limit approaches \( +\infty \) from the right and \( -\infty \) from the left, indicating a discontinuity. ### Conclusion The derivative \( \frac{dy}{dz} \) at \( x = 0 \) does not exist due to the discontinuity.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

The derivative of sec^(-1)(1/(2x^2-1)) with respect to sqrt(1+3x) at x=-1/3 (a) does not exist (b) 0 (c) 1/2 (d) 1/3

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Find the derivative of sec^(-1)(1/(2x^2-1))wdotrdott sqrt(1-x^2) at x=1/2

Find the derivative of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) at x=1/2

The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1-x^(2))/(1+x^(2))) is

The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to x is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

    Text Solution

    |

  2. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  3. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  4. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  5. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  6. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  7. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  8. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  9. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  10. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  11. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  12. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  13. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  14. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  15. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  16. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  17. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  18. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  19. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  20. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |