Home
Class 12
MATHS
If 5f(x)+3f(1/x)=x+2 and y=x f(x), then...

If `5f(x)+3f(1/x)=x+2` and `y=x f(x),` then find `dy/dx` at `x=1`.

A

14

B

`(7)/(8)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript while elaborating on each step. ### Step 1: Analyze the given equation We start with the equation: \[ 5f(x) + 3f\left(\frac{1}{x}\right) = x + 2 \] This equation holds for all \( x \neq 0 \). ### Step 2: Substitute \( x \) with \( \frac{1}{x} \) Next, we replace \( x \) with \( \frac{1}{x} \): \[ 5f\left(\frac{1}{x}\right) + 3f(x) = \frac{1}{x} + 2 \] ### Step 3: Set up a system of equations Now we have two equations: 1. \( 5f(x) + 3f\left(\frac{1}{x}\right) = x + 2 \) (Equation 1) 2. \( 5f\left(\frac{1}{x}\right) + 3f(x) = \frac{1}{x} + 2 \) (Equation 2) ### Step 4: Solve the system of equations We can eliminate \( f\left(\frac{1}{x}\right) \) and \( f(x) \) by multiplying Equation 1 by 5 and Equation 2 by 3: - From Equation 1: \[ 25f(x) + 15f\left(\frac{1}{x}\right) = 5x + 10 \] - From Equation 2: \[ 15f\left(\frac{1}{x}\right) + 9f(x) = 3 + 6 \] Now we can subtract these equations to eliminate \( f\left(\frac{1}{x}\right) \): \[ (25f(x) + 15f\left(\frac{1}{x}\right)) - (15f\left(\frac{1}{x}\right) + 9f(x)) = (5x + 10) - (3 + 6) \] This simplifies to: \[ 16f(x) = 5x + 1 \] Thus, \[ f(x) = \frac{5x + 1}{16} \] ### Step 5: Find \( f(1) \) Now we need to find \( f(1) \): \[ f(1) = \frac{5(1) + 1}{16} = \frac{6}{16} = \frac{3}{8} \] ### Step 6: Differentiate \( f(x) \) Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{5x + 1}{16}\right) = \frac{5}{16} \] ### Step 7: Define \( y \) and find \( \frac{dy}{dx} \) Given \( y = x f(x) \): \[ y = x \cdot \frac{5x + 1}{16} \] Now, we differentiate \( y \): \[ \frac{dy}{dx} = f(x) + x f'(x) \] Substituting \( f(1) \) and \( f'(1) \): \[ \frac{dy}{dx} = f(1) + 1 \cdot f'(1) = \frac{3}{8} + \frac{5}{16} \] ### Step 8: Find a common denominator and simplify To add these fractions, we need a common denominator: \[ \frac{3}{8} = \frac{6}{16} \] Thus, \[ \frac{dy}{dx} = \frac{6}{16} + \frac{5}{16} = \frac{11}{16} \] ### Final Answer The value of \( \frac{dy}{dx} \) at \( x = 1 \) is: \[ \frac{dy}{dx} = \frac{11}{16} \]

To solve the problem step by step, we will follow the instructions given in the video transcript while elaborating on each step. ### Step 1: Analyze the given equation We start with the equation: \[ 5f(x) + 3f\left(\frac{1}{x}\right) = x + 2 \] This equation holds for all \( x \neq 0 \). ### Step 2: Substitute \( x \) with \( \frac{1}{x} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to 0 (b) -1/(14) (c) -1/4 (d) None of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2) , then find (dy)/(dx) at x=1 .

Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If f'(x)=x/2 + 2/x and f(1)=5/4 , then find f(x) .

If f^(prime)(1)=2 and y=f((log)_e x) , find (dy)/(dx) at x=e .

If y = f(x^2) and f'(x) = e^(sqrtx) , then find (dy)/(dx)

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2...

    Text Solution

    |

  2. y=tan^(-1) ((3x-x^3)/(1-3x^2)). Find dy/dx .

    Text Solution

    |

  3. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  4. Let f and g be differentiable functions satisfying g'(a) = 2 g(a) = b ...

    Text Solution

    |

  5. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |

  6. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  7. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  8. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  9. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  10. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  11. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  12. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  13. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  14. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  15. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  16. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  17. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  18. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  19. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  20. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |