Home
Class 12
MATHS
Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x...

Let `f(x)=(x^2-x)/(x^2+2x)` then `d(f^(-1)x)/(dx)` is equal to

A

`(-3)/((1-x)^(2))`

B

`(3)/((1-x)^(2))`

C

`(1)/((1-x)^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the inverse function \( f^{-1}(x) \) for the given function \( f(x) = \frac{x^2 - x}{x^2 + 2x} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \frac{x^2 - x}{x^2 + 2x} \] 2. **Determine where \( f(x) \) is undefined**: The function \( f(x) \) is undefined when the denominator is zero: \[ x^2 + 2x = 0 \] Factoring gives: \[ x(x + 2) = 0 \implies x = 0 \text{ or } x = -2 \] Thus, the domain of \( f(x) \) is \( \mathbb{R} \setminus \{-2, 0\} \). 3. **Simplify the function**: We can simplify \( f(x) \): \[ f(x) = \frac{x(x - 1)}{x(x + 2)} = \frac{x - 1}{x + 2} \quad \text{(for } x \neq 0\text{)} \] 4. **Express \( f(x) \) in terms of \( y \)**: Set \( y = f(x) \): \[ y = \frac{x - 1}{x + 2} \] Rearranging gives: \[ y(x + 2) = x - 1 \implies yx + 2y = x - 1 \] Rearranging to isolate \( x \): \[ yx - x = -1 - 2y \implies x(y - 1) = -1 - 2y \implies x = \frac{-1 - 2y}{y - 1} \] Thus, we have: \[ f^{-1}(y) = \frac{-1 - 2y}{y - 1} \] 5. **Differentiate \( f^{-1}(x) \)**: Now we need to differentiate \( f^{-1}(x) \): \[ f^{-1}(x) = \frac{-1 - 2x}{x - 1} \] We apply the quotient rule: \[ \frac{d}{dx} f^{-1}(x) = \frac{(x - 1)(-2) - (-1 - 2x)(1)}{(x - 1)^2} \] 6. **Simplify the derivative**: Simplifying the numerator: \[ = \frac{-2(x - 1) + (1 + 2x)}{(x - 1)^2} = \frac{-2x + 2 + 1 + 2x}{(x - 1)^2} = \frac{3}{(x - 1)^2} \] 7. **Final result**: Therefore, the derivative of the inverse function is: \[ \frac{d}{dx} f^{-1}(x) = \frac{3}{(1 - x)^2} \] ### Conclusion: The answer is: \[ \frac{d(f^{-1}(x))}{dx} = \frac{3}{(1 - x)^2} \]

To solve the problem, we need to find the derivative of the inverse function \( f^{-1}(x) \) for the given function \( f(x) = \frac{x^2 - x}{x^2 + 2x} \). ### Step-by-Step Solution: 1. **Identify the function**: \[ f(x) = \frac{x^2 - x}{x^2 + 2x} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x], then f(-3/2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

If f(x)=(x^2)/(|x|) , write d/(dx)(f(x))

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If P(x) is a polynomial such that P(x^(2)+1)={P(x)}^(2)+1 and P(0)=0...

    Text Solution

    |

  2. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  3. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  4. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  5. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  6. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  7. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  8. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  9. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  10. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  11. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  12. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  13. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  14. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  15. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  16. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  17. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  18. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  19. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  20. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |