Home
Class 12
MATHS
If f is a bijection satisfying f'(x)=sqr...

If f is a bijection satisfying `f'(x)=sqrt((1-{f(x)}^(2))`, then `(f^(1))'x`

A

is equal to `(1)/(sqrt(1-x^(2))`

B

may not exist for every `x in R`

C

may not be known explicitly

D

is equal `sin^(-1)(f(x))`

Text Solution

AI Generated Solution

To solve the problem step by step, we need to find the derivative of the inverse function \( (f^{-1})'(x) \) given that \( f'(x) = \sqrt{1 - (f(x))^2} \). ### Step 1: Understand the relationship between \( f \) and \( f^{-1} \) Since \( f \) is a bijection, it has an inverse function \( f^{-1} \). By the property of inverse functions, we know that: \[ f(f^{-1}(x)) = x \] for all \( x \) in the range of \( f \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is equal to

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If f(x)=sqrt(1-sin2x), then f'(x) equals

If f(x) is a function satisfying f(x)-f(y)=(y^y)/(x^x)f((x^x)/(y^y))AAx , y in R^*"and"f^(prime)(1)=1 , then find f(x)

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

Statement -1: Let f(x) be a function satisfying f(x-1)+f(x+1)=sqrt(2)f(x) for all x in R . Then f(x) is periodic with period 8. Statement-2: For every natural number n there exists a periodic functions with period n.

Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=-g(x), x 0 If f(x) is continuous satisfying f'(1)=f(-1) , then g(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

    Text Solution

    |

  2. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  3. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  4. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  5. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  6. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  7. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  8. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  9. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  10. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  11. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  12. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  13. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  14. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  15. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  16. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  17. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  18. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  19. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  20. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |