Home
Class 12
MATHS
If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(l...

If `f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))},` then `f'((1)/( e ))` is equal to

A

e

B

`-e`

C

1

D

`2e`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{1}{e}\right) \) for the function \[ f(x) = \cos^{-1}\left(\frac{1 - (\log_e x)^2}{1 + (\log_e x)^2}\right), \] we will follow these steps: ### Step 1: Rewrite the function in terms of \( \theta \) We can relate this function to the double angle formula for cosine. We know that: \[ \cos(2\theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}. \] Let \( \log_e x = \tan \theta \). Then, we can rewrite \( f(x) \) as: \[ f(x) = \cos^{-1}(\cos(2\theta)) = 2\theta. \] ### Step 2: Express \( \theta \) in terms of \( x \) Since \( \theta = \tan^{-1}(\log_e x) \), we have: \[ f(x) = 2 \tan^{-1}(\log_e x). \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}[2 \tan^{-1}(\log_e x)]. \] Using the chain rule, we have: \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{d}{dx}[\log_e x]. \] The derivative of \( \log_e x \) is \( \frac{1}{x} \). Thus, \[ f'(x) = 2 \cdot \frac{1}{1 + (\log_e x)^2} \cdot \frac{1}{x}. \] ### Step 4: Substitute \( x = \frac{1}{e} \) Now we need to evaluate \( f'\left(\frac{1}{e}\right) \): \[ f'\left(\frac{1}{e}\right) = 2 \cdot \frac{1}{1 + (\log_e \frac{1}{e})^2} \cdot \frac{1}{\frac{1}{e}}. \] Calculating \( \log_e \frac{1}{e} \): \[ \log_e \frac{1}{e} = \log_e e^{-1} = -1. \] Thus, \[ f'\left(\frac{1}{e}\right) = 2 \cdot \frac{1}{1 + (-1)^2} \cdot e = 2 \cdot \frac{1}{1 + 1} \cdot e = 2 \cdot \frac{1}{2} \cdot e = e. \] ### Final Answer Therefore, \[ f'\left(\frac{1}{e}\right) = e. \] ---

To find \( f'\left(\frac{1}{e}\right) \) for the function \[ f(x) = \cos^{-1}\left(\frac{1 - (\log_e x)^2}{1 + (\log_e x)^2}\right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=|log_(e) x|,then

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int(1)/(x cos^(2)(log_(e)x))dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

If f(x) =|log_(e)|x||, then f'(x) equals

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. let f(x) be a polynomial function of degree 2 and f(x)gt0 for all x in...

    Text Solution

    |

  2. If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)), then (f^(1))...

    Text Solution

    |

  3. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  4. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  5. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  6. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  7. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  8. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  9. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  10. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  11. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  12. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  13. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  14. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  15. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  16. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  17. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  18. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  19. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  20. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |