Home
Class 12
MATHS
Let f be a differentiable function satis...

Let f be a differentiable function satisfying
`f(x)+f(y)+f(z)+f(x)f(y)f(z)=14" for all "x,y,z inR` Then,

A

`f'(x)lt0" for all "x in R`

B

`f'(x)=0" for all "x in R`

C

`f'(x)gt0" for all "x in R`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write down the given equation. The function \( f \) satisfies the equation: \[ f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14 \] for all \( x, y, z \in \mathbb{R} \). ### Step 2: Substitute \( x = y = z = 0 \). Let’s substitute \( x = 0, y = 0, z = 0 \) into the equation: \[ f(0) + f(0) + f(0) + f(0)f(0)f(0) = 14 \] This simplifies to: \[ 3f(0) + f(0)^3 = 14 \] Let \( f(0) = a \). Then we have: \[ 3a + a^3 = 14 \] ### Step 3: Rearrange the equation. Rearranging gives us: \[ a^3 + 3a - 14 = 0 \] ### Step 4: Find the roots of the cubic equation. We can test possible rational roots. By substituting \( a = 2 \): \[ 2^3 + 3(2) - 14 = 8 + 6 - 14 = 0 \] Thus, \( a = 2 \) is a root, so \( f(0) = 2 \). ### Step 5: Substitute \( y = x \) and \( z = x \) into the original equation. Now, substitute \( y = x \) and \( z = x \): \[ f(x) + f(x) + f(x) + f(x)f(x)f(x) = 14 \] This simplifies to: \[ 3f(x) + f(x)^3 = 14 \] Let \( f(x) = b \). Then we have: \[ 3b + b^3 = 14 \] ### Step 6: Differentiate the equation. Differentiating both sides with respect to \( x \): \[ 3f'(x) + 3f(x)^2 f'(x) = 0 \] Factoring out \( f'(x) \): \[ f'(x)(3 + 3f(x)^2) = 0 \] ### Step 7: Analyze the factored equation. This gives us two cases: 1. \( f'(x) = 0 \) 2. \( 3 + 3f(x)^2 = 0 \) (which cannot happen since \( f(x)^2 \) is always non-negative) Thus, we conclude: \[ f'(x) = 0 \quad \text{for all } x \in \mathbb{R} \] ### Step 8: Conclusion. Since \( f'(x) = 0 \) for all \( x \), \( f(x) \) must be a constant function. Given \( f(0) = 2 \), we conclude: \[ f(x) = 2 \quad \text{for all } x \in \mathbb{R} \] ### Final Answer: The correct option is that \( f'(x) = 0 \) for all \( x \in \mathbb{R} \). ---

To solve the problem, we will follow these steps: ### Step 1: Write down the given equation. The function \( f \) satisfies the equation: \[ f(x) + f(y) + f(z) + f(x)f(y)f(z) = 14 \] for all \( x, y, z \in \mathbb{R} \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for all "x inR. Then, f'(x)f(nx)

If f : R-{-1}->R and f is differentiable function satisfies f(x+f(y) +x f(y)) = y+f(x)+y.f(x) forall x,y in R-{-1} then find the value of 2010 [ 1 +f(2009)]

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f(9) is

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

Let f :R to R be a differentiable function satisfying: f (xy) =(f(x))/(y)+f(y)/(x) AAx, y in R ^(+) also f (1)=0,f '(1) =1 find lim _(x to e) [(1)/(f (x))] (where [.] denotes greatest integer function).

Let f : R rarr R be a differentiable function satisfying f(x) = f(y) f(x - y), AA x, y in R and f'(0) = int_(0)^(4) {2x}dx , where {.} denotes the fractional part function and f'(-3) = alpha e^(beta) . Then, |alpha + beta| is equal to.......

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. If f(x)=cos^(-1){(1-(log(e)x)^(2))/(1+(log(e)x)^(2))}, then f'((1)/( e...

    Text Solution

    |

  2. Let f(x)=x^n ,n being a non negative integer. The value of n for which...

    Text Solution

    |

  3. Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y...

    Text Solution

    |

  4. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  5. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  6. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  7. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  8. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  9. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  10. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  11. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  12. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  13. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  14. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  15. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  16. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  17. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  18. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  19. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  20. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |