Home
Class 12
MATHS
If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+...

If `f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2)))`, then

A

`f'(-2)=(4)/(5)`

B

`f'(-1)=-1`

C

`f'(x)=0" for all "xlt0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \tan^{-1}(x) + \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 1: Simplifying the Function We can simplify the term \(\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)\). Using the identity: \[ \cos^{-1}(y) = 2\tan^{-1}\left(\frac{\sqrt{1-y}}{\sqrt{1+y}}\right) \] we can rewrite: \[ \frac{1 - x^2}{1 + x^2} = \cos(2\theta) \quad \text{where } \tan(\theta) = x \] This gives: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = 2\tan^{-1}(x) \] Thus, we can rewrite \(f(x)\): \[ f(x) = \tan^{-1}(x) + 2\tan^{-1}(x) = 3\tan^{-1}(x) \quad \text{for } x \geq 0 \] For \(x < 0\), we have: \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = -2\tan^{-1}(x) \] So, \[ f(x) = \tan^{-1}(x) - 2\tan^{-1}(x) = -\tan^{-1}(x) \quad \text{for } x < 0 \] ### Step 2: Finding the Derivative Now, we differentiate \(f(x)\): - For \(x \geq 0\): \[ f'(x) = 3 \cdot \frac{1}{1 + x^2} \] - For \(x < 0\): \[ f'(x) = -\frac{1}{1 + x^2} \] ### Step 3: Evaluating the Derivative at Specific Points 1. **At \(x = -1\)**: - Since \(-1 < 0\): \[ f'(-1) = -\frac{1}{1 + (-1)^2} = -\frac{1}{2} \] 2. **At \(x = -2\)**: - Since \(-2 < 0\): \[ f'(-2) = -\frac{1}{1 + (-2)^2} = -\frac{1}{5} \] 3. **At \(x = 0\)**: - Since \(0 \geq 0\): \[ f'(0) = 3 \cdot \frac{1}{1 + 0^2} = 3 \] ### Conclusion - For \(x = -1\), \(f'(-1) = -\frac{1}{2}\) - For \(x = -2\), \(f'(-2) = -\frac{1}{5}\) - For \(x = 0\), \(f'(0) = 3\) ### Final Answer None of the options provided in the question are correct based on our calculations.

To solve the problem, we need to analyze the function given: \[ f(x) = \tan^{-1}(x) + \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 1: Simplifying the Function We can simplify the term \(\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)\). Using the identity: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

Find the range of f(x)=|3tan^(-1)x-cos^(-1)(0)|-cos^(-1)(-1)dot

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. I ff(x)=2tan^(- 1)x+sin^(- 1)((2x)/(1+x^2)), x > 1.T h e n , f(5) is e...

    Text Solution

    |

  2. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  3. If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))), then

    Text Solution

    |

  4. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  5. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  6. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  7. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  8. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  9. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  10. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  11. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  12. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  13. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  14. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  15. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  16. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  17. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  18. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  19. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  20. If f(x)=(x)/(1+|x|)" for "x inR, then f'(0)=

    Text Solution

    |