Home
Class 12
MATHS
Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."I...

Let `y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx.` Then,

A

`a=4, b=2`

B

`a=4, b=-2`

C

`a=-2, b=4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function: \[ y = \frac{x^8 + x^4 + 1}{x^4 + x^2 + 1} \] We need to find the derivative \( \frac{dy}{dx} \) and express it in the form \( ax^3 + bx \) to determine the values of \( a \) and \( b \). ### Step 1: Differentiate using the Quotient Rule The Quotient Rule states that if you have a function \( y = \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: - \( u = x^8 + x^4 + 1 \) - \( v = x^4 + x^2 + 1 \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). ### Step 2: Calculate \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) 1. Differentiate \( u \): \[ \frac{du}{dx} = 8x^7 + 4x^3 + 0 = 8x^7 + 4x^3 \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = 4x^3 + 2x + 0 = 4x^3 + 2x \] ### Step 3: Substitute into the Quotient Rule Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the Quotient Rule formula: \[ \frac{dy}{dx} = \frac{(x^4 + x^2 + 1)(8x^7 + 4x^3) - (x^8 + x^4 + 1)(4x^3 + 2x)}{(x^4 + x^2 + 1)^2} \] ### Step 4: Simplify the expression To simplify \( \frac{dy}{dx} \), we will expand the numerator: 1. Expand \( (x^4 + x^2 + 1)(8x^7 + 4x^3) \): - \( x^4 \cdot 8x^7 = 8x^{11} \) - \( x^2 \cdot 8x^7 = 8x^9 \) - \( 1 \cdot 8x^7 = 8x^7 \) - \( x^4 \cdot 4x^3 = 4x^7 \) - \( x^2 \cdot 4x^3 = 4x^5 \) - \( 1 \cdot 4x^3 = 4x^3 \) Combining these gives: \[ 8x^{11} + 8x^9 + 12x^7 + 4x^5 + 4x^3 \] 2. Expand \( (x^8 + x^4 + 1)(4x^3 + 2x) \): - \( x^8 \cdot 4x^3 = 4x^{11} \) - \( x^4 \cdot 4x^3 = 4x^7 \) - \( 1 \cdot 4x^3 = 4x^3 \) - \( x^8 \cdot 2x = 2x^9 \) - \( x^4 \cdot 2x = 2x^5 \) - \( 1 \cdot 2x = 2x \) Combining these gives: \[ 4x^{11} + 2x^9 + 4x^7 + 2x^5 + 2x \] ### Step 5: Combine the results Now, we can combine the results from both expansions: \[ \text{Numerator} = (8x^{11} + 8x^9 + 12x^7 + 4x^5 + 4x^3) - (4x^{11} + 2x^9 + 4x^7 + 2x^5 + 2x) \] This simplifies to: \[ (8x^{11} - 4x^{11}) + (8x^9 - 2x^9) + (12x^7 - 4x^7) + (4x^5 - 2x^5) + (4x^3) - 2x \] \[ = 4x^{11} + 6x^9 + 8x^7 + 2x^5 + 4x^3 - 2x \] ### Step 6: Identify coefficients Now, we need to express \( \frac{dy}{dx} \) in the form \( ax^3 + bx \). From the simplified numerator, we can see: - The coefficient of \( x^3 \) is \( 4 \) (from \( 4x^3 \)). - The coefficient of \( x \) is \( -2 \) (from \( -2x \)). Thus, we have: \[ a = 4, \quad b = -2 \] ### Final Answer The values of \( a \) and \( b \) are: \[ a = 4, \quad b = -2 \]

To solve the problem, we start with the given function: \[ y = \frac{x^8 + x^4 + 1}{x^4 + x^2 + 1} \] We need to find the derivative \( \frac{dy}{dx} \) and express it in the form \( ax^3 + bx \) to determine the values of \( a \) and \( b \). ### Step 1: Differentiate using the Quotient Rule ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

If y=6 x^(5)-4x^(4)+2x^(2)+3x+2 , then find (dy)/(dx) at x=-1.

8.If .If y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+x^(2)+...) ,then (dy)/(dx) is equal to

(i) Let y=((2+5x)^(2))/(x^(3) -1) then find dy/dx

If y = sqrt(1+sqrt(1+x^(4))) , prove that y * (y^(2) - 1)(dy)/(dx) = x^(3) .

If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) then (dy)/(dx) at x=0 is

If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) then (dy)/(dx) at x=0 is

(dy)/(dx)=(x+y+1)/(2x+2y+3)

Let y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1) and (dy)/(dx)=ax+b , the ordered pair (a, b) is

If y=(1)/(x^4) , then (dy)/(dx) will be

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Letf(x)=x^(2)+xg'(1)+g''(2) and g(x)=x^(2)+xf'(2)+f''(3). Then

    Text Solution

    |

  2. f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The...

    Text Solution

    |

  3. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  4. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  5. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  6. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  7. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  8. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  9. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  10. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  11. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  12. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  13. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  14. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  15. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  16. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  17. If f(x)=(x)/(1+|x|)" for "x inR, then f'(0)=

    Text Solution

    |

  18. If f(x)=(1)/(1-x), then the derivative of the composite function f[f{f...

    Text Solution

    |

  19. "Let "f(theta)=sin (tan^(-1)((sin theta)/(sqrt(cos 2theta))))," where ...

    Text Solution

    |

  20. if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

    Text Solution

    |