Home
Class 12
MATHS
Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(...

Let `f(x)=3x^(2)+4xg'(1)+g''(2)`
and, `g(x)=2x^(2)+3xf'(2)+f''(3)" for all "x in R.` Then,

A

`f'(1)=22+12f'(2)`

B

`g,(2)=44+12g'(1)`

C

`f''(3)+g''(2)=10`

D

all the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given functions \( f(x) \) and \( g(x) \) and their derivatives. Given: 1. \( f(x) = 3x^2 + 4x g'(1) + g''(2) \) 2. \( g(x) = 2x^2 + 3x f'(2) + f''(3) \) ### Step 1: Differentiate \( f(x) \) We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx}(3x^2 + 4x g'(1) + g''(2)) \] Since \( g'(1) \) and \( g''(2) \) are constants, we differentiate: \[ f'(x) = 6x + 4g'(1) \] ### Step 2: Differentiate \( g(x) \) Next, we differentiate \( g(x) \): \[ g'(x) = \frac{d}{dx}(2x^2 + 3x f'(2) + f''(3)) \] Again, since \( f'(2) \) and \( f''(3) \) are constants, we differentiate: \[ g'(x) = 4x + 3f'(2) \] ### Step 3: Evaluate \( f'(1) \) and \( g'(2) \) Now we need to evaluate \( f'(1) \) and \( g'(2) \): 1. **For \( f'(1) \)**: \[ f'(1) = 6(1) + 4g'(1) = 6 + 4g'(1) \] 2. **For \( g'(2) \)**: \[ g'(2) = 4(2) + 3f'(2) = 8 + 3f'(2) \] ### Step 4: Substitute \( g'(1) \) and \( f'(2) \) Now we substitute \( g'(1) \) from \( g'(x) \) evaluated at \( x=1 \): \[ g'(1) = 4(1) + 3f'(2) = 4 + 3f'(2) \] Substituting this into the equation for \( f'(1) \): \[ f'(1) = 6 + 4(4 + 3f'(2)) = 6 + 16 + 12f'(2) = 22 + 12f'(2) \] ### Step 5: Substitute \( f'(2) \) into \( g'(2) \) Now we can substitute \( f'(2) \) into the equation for \( g'(2) \): \[ g'(2) = 8 + 3f'(2) \] ### Step 6: Evaluate \( f''(x) \) and \( g''(x) \) Next, we differentiate \( f'(x) \) to find \( f''(x) \): \[ f''(x) = \frac{d}{dx}(6x + 4g'(1)) = 6 \] And for \( g'(x) \): \[ g''(x) = \frac{d}{dx}(4x + 3f'(2)) = 4 \] ### Step 7: Final Evaluation Now we can evaluate \( f''(3) \) and \( g''(2) \): - \( f''(3) = 6 \) - \( g''(2) = 4 \) ### Conclusion From our evaluations, we can summarize: 1. \( f'(1) = 22 + 12f'(2) \) 2. \( g'(2) = 8 + 3f'(2) \) 3. \( f''(3) = 6 \) 4. \( g''(2) = 4 \) Thus, all options provided in the question are correct.

To solve the problem, we need to analyze the given functions \( f(x) \) and \( g(x) \) and their derivatives. Given: 1. \( f(x) = 3x^2 + 4x g'(1) + g''(2) \) 2. \( g(x) = 2x^2 + 3x f'(2) + f''(3) \) ### Step 1: Differentiate \( f(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

Let f(x)=x^2+xg^2(1)+g^''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. f(x) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

Let f be a function such that f(x+y)=f(x)+f(y)" for all "x and y and f(x) =(2x^(2)+3x) g(x)" for all "x, " where "g(x) is continuous and g(0) = 3. Then find f'(x)

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(g(x)))=x for all x in R . Then, h'(1) equals.

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

    Text Solution

    |

  2. If f(x-y), f(x) f(y), and f(x+y) are in A.P. for all x, y, and f(0) ne...

    Text Solution

    |

  3. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  4. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  5. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  6. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  7. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  8. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  9. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  10. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  11. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  12. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  13. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  14. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  15. If f(x)=(x)/(1+|x|)" for "x inR, then f'(0)=

    Text Solution

    |

  16. If f(x)=(1)/(1-x), then the derivative of the composite function f[f{f...

    Text Solution

    |

  17. "Let "f(theta)=sin (tan^(-1)((sin theta)/(sqrt(cos 2theta))))," where ...

    Text Solution

    |

  18. if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

    Text Solution

    |

  19. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  20. Let y(x)=cos(3cos^-1x),x in [-1,1],x != +- sqrt3/2. Then 1/(y(x)){(x^2...

    Text Solution

    |