Home
Class 12
MATHS
If f(x)=(x)/(1+|x|)" for "x inR, then f'...

If `f(x)=(x)/(1+|x|)" for "x inR`, then f'(0)`=

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = \frac{x}{1 + |x|} \), we need to consider the behavior of the function around \( x = 0 \). Since the absolute value function can change the expression of \( f(x) \) depending on whether \( x \) is positive or negative, we will analyze both cases. ### Step-by-Step Solution 1. **Define the function based on the sign of \( x \)**: \[ f(x) = \begin{cases} \frac{x}{1 + x} & \text{if } x \geq 0 \\ \frac{x}{1 - x} & \text{if } x < 0 \end{cases} \] 2. **Calculate the left-hand derivative (LHD) at \( x = 0 \)**: \[ \text{LHD} = \lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^-} \frac{f(h)}{h} \] For \( h < 0 \), we use \( f(h) = \frac{h}{1 - h} \): \[ \text{LHD} = \lim_{h \to 0^-} \frac{\frac{h}{1 - h}}{h} = \lim_{h \to 0^-} \frac{1}{1 - h} = \frac{1}{1 - 0} = 1 \] 3. **Calculate the right-hand derivative (RHD) at \( x = 0 \)**: \[ \text{RHD} = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{f(h)}{h} \] For \( h \geq 0 \), we use \( f(h) = \frac{h}{1 + h} \): \[ \text{RHD} = \lim_{h \to 0^+} \frac{\frac{h}{1 + h}}{h} = \lim_{h \to 0^+} \frac{1}{1 + h} = \frac{1}{1 + 0} = 1 \] 4. **Conclusion**: Since both the left-hand derivative and the right-hand derivative at \( x = 0 \) are equal: \[ f'(0) = \text{LHD} = \text{RHD} = 1 \] Thus, the value of \( f'(0) \) is \( \boxed{1} \).

To find \( f'(0) \) for the function \( f(x) = \frac{x}{1 + |x|} \), we need to consider the behavior of the function around \( x = 0 \). Since the absolute value function can change the expression of \( f(x) \) depending on whether \( x \) is positive or negative, we will analyze both cases. ### Step-by-Step Solution 1. **Define the function based on the sign of \( x \)**: \[ f(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|58 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying [f(x)]^(n)=f(nx)" for all "x inR. Then, f'(x)f(nx)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/(1+(f (x))^(2)) then:

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

If 3f(x)-f((1)/(x))= log_(e) x^(4) for x gt 0 ,then f(e^(x))=

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIATION-Section I - Solved Mcqs
  1. Let f(x)=3x^(2)+4xg'(1)+g''(2) and, g(x)=2x^(2)+3xf'(2)+f''(3)" for ...

    Text Solution

    |

  2. If f(x)=x^(n), then the value of f(1)-(f'(1))/(1!)+(f''(1))/(2!)-(f''...

    Text Solution

    |

  3. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  4. Let f(x)=sqrt(x-1)+sqrt(x+24-10sqrt(x-1)), 1ltxlt26 be real valued fun...

    Text Solution

    |

  5. (d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)...

    Text Solution

    |

  6. f(x) and g(x) are two differentiable functions in [0,2] such that f"(...

    Text Solution

    |

  7. If f(1) = 3, f' (1) = -1/3, then the derivative of {x^11 + f (x)}^-2 a...

    Text Solution

    |

  8. If y is a function of x and log(x+y)-2x y=0, then the value of y^(prim...

    Text Solution

    |

  9. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  10. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  11. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  12. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  13. If f(x)=(x)/(1+|x|)" for "x inR, then f'(0)=

    Text Solution

    |

  14. If f(x)=(1)/(1-x), then the derivative of the composite function f[f{f...

    Text Solution

    |

  15. "Let "f(theta)=sin (tan^(-1)((sin theta)/(sqrt(cos 2theta))))," where ...

    Text Solution

    |

  16. if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

    Text Solution

    |

  17. "If "y=sec (tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to

    Text Solution

    |

  18. Let y(x)=cos(3cos^-1x),x in [-1,1],x != +- sqrt3/2. Then 1/(y(x)){(x^2...

    Text Solution

    |

  19. If a curve is represented parametrically by the equation x = 4t^(3)+3 ...

    Text Solution

    |

  20. "If for "x in (0,(1)/(4))," the derivative of "tan^(-1)((6xsqrt(x))/(1...

    Text Solution

    |